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Abstract—Recently, The UAV (Unmanned Aerial Vehicle) 
industry is getting a lot of attention, especially for very small 
drones that could fly indoors. Such a small drone can help perform 
rescue tasks such as investigating gas leaks or emergency situation 
that imposes risk on human intervention. Additionally, the UAVs 
can be utilized for indoor inspection and 3D mapping. The indoor 
environment is very challenging for the UAVs since the Global 
Navigation Satellite System (GNSS) cannot be reliably accessed to 
help UAV to locate itself. Various sensors could be mounted on 
UAVs to help the surveillance and navigation aspects of the 
operation. Range sensors such as 2D Lasers and LIDAR are very 
useful for providing valuable measurements towards reliable 
localization algorithms.  Including such sensors will typically raise 
the system cost and limit the flight time due to increased power 
consumption. This research aims to assess the potential of using 
the typically installed UAV main camera to help estimate the UAV 
heading. The typical indoor environment includes many 
challenging situations such as monochrome surfaces and identical 
repeated patterns, especially in the ground surface. The research 
investigates the performance of different heading estimation 
approaches using a minimum cost configuration (without laser 
scanners). The proposed integration between the drone forward 
camera and the downward camera enhanced the navigation result 
compared to the other individual solutions using the downward 
camera only, forward camera only, or magnetometer. The 
performance of the investigated approaches in a real indoor flight 
is presented and discussed.  

Keywords— UAV, visual odometry, monocular camera, heading, 
magnetometer 

I. INTRODUCTION 
. While UAVs can smoothly fly outdoors with the 

information provided from GNSS to localize itself, they face a 
huge challenge to localize itself in indoor environments without 
GNSS information. Many applications can employ drones in 
indoor environments to help perform various tasks such as 
surveillance missions, remote inspection, search and rescue, 
and disaster assessment. The typical drone setup for flying in 
an indoor environment usually comprises a LiDAR (Light 
Detection And Ranging) sensor among the other sensors to help 
build a map for the surrounding environment and to localize 
itself based on the range measurements through transmitted and 
received laser signals.  

Several enterprises are focused on developing improved 
drone hardware and applications, such as DJI, Hubsan, Parrot, 
and Yuneec. The drone market is recently expanding to include 
drones' weight below 250 grams [1]. The UAV regulations in 
different regions of the world consider drones below 250 grams 
as harmless drones and do not require a license to fly or 
registration[1].  According to rules in many regions, drones are 
categorized into two different types: basic drones and more 
advanced drones, where each type follows a different set of 
rules [1].  

Micro Aerial Vehicles (MAVs) should typically be very 
close to sightline with their operator for rescue and search 
missions[2]. Controlling the drone in an indoor environment is 
extremely challenging due to the minimal space and may cause 
damage to the drone itself due to the expected operator 
stress[3]. For the reasons mentioned above, it is very desirable 
to fly drones in an indoor environment without any human 
intervention[3]. Low-cost drones can be a handy tool for many 
search and rescue missions. With only minimum configuration, 
such as an inertial measurement unit (IMU) and regular 
cameras, the drone can fly autonomously by connecting it to a 
computer [3].  

This paper investigates the performance of different 
heading estimation approaches using low-cost configuration in 
indoor environments. Three approaches for heading estimation 
using cameras and magnetometers have been evaluated for 
comparison purposes.  

Section II presents some related work to the current 
research. Section III depicts the methodology for the 
investigated heading estimation approaches. Section IV covers 
the performed test and discusses the comparison results.  

II. RELATED WORK 
Autonomous MAVs navigation in indoor environments 

depends on various sensors to compensate the inaccessibility of 
GNSS systems. The laser range finders such as the Velodyne 
sensor has a  relatively high weight compared to the typical 
weight of such MAVs, so 2D scanners are the most commonly 
employed lasers with MAVs [3].  RGB-D camera is another 
option that could be employed for indoor navigation with its 
ability to capture depth measurements based on the structured 
light method. The depth information sensed by both laser 
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scanners and RGB-D cameras enables more robust navigation 
of drones in indoor environments. The vision-based navigation 
has a significant potential to navigate the UAVs, especially with 
the help of inertial sensors; however, the navigation states could 
drift over time because of the accumulative fashion of state 
estimation between successive frames [3]. A robust technique 
proposed by Stefan Hrabar[4] combines stereo navigation and 
optical flow to guide the UAVs in an Urban area. Lippiello[5] 
offers another vision-based approach for obstacle avoidance in 
an indoor environment using optical flow and inertial 
measurements of MAVs. The drone's trajectory is adjusted 
based on the obstacle observed by the depth map obtained using 
the optical flow algorithm [5].  Drone visual data has been 
employed in [6] to support autonomous takeoff, landing, and 
cruise maneuvers. Using the optical flow technique, a wall 
collision avoidance method is proposed using the depth map 
information built using visual data [7].  Visual Inertial 
Odometry (VIO) algorithms are generally used in MAVs and 
offer the drone's location in a GNSS denied environment. To 
ensure indoor harmless autonomous navigation for MAVs via 
corridors, an omnidirectional fisheye camera has been utilized 
as the main sensor and integrated with IMU data [7].  

The optical flow algorithm of downward vision has been 
employed successfully to assist MAVs maneuvers and 
navigation in indoor environments.  The relative motion V 
between the imaging sensor and a point ܲ  is described as 
follows[9]: ܸ =  − ௧ܶ௥  −  ߱ ∗  ܲ
where  ௧ܶ௥  is the translational component of the motion  

      ߱  is the angular velocity  
 

And the relation between the velocity V of  point P and the flow 
v of the corresponding point  ߩ in the image plane is given as 
follows [9]: ݒఘ  =  ݂ ௓ ∗ ௏ ି ௏ೋ ∗ ௉௓మ

where: ݒఘ is the flow or velocity of point p in image plane, 
V is the velocity of point P in object space, f is the camera focal 
length and Z is the height of the imaging sensor. However, this 
downward vision approach suffers in various scenarios if the 
drone is flying over a reflective surface, monochrome surface, 
moving surface, or surfaces with identically repeating patterns 
[8]. The forward-looking cameras have a higher potential than 
the downward vision sensor to overcome many of these 
challenges. 

Different visual-based navigation approaches have been 
proposed, such as the SLAM (Simultaneous Localization and 
Mapping), MVO (Monocular Visual Odometry), or SVO 
(Stereo Visual Odometry) [10]. VO can be divided into feature-
based methods, direct based methods, and hybrid methods, 
which is a combination of both [11]. PTAM (Parallel Tracking 
and Mapping) is a common approach of  MVO for UAVs and 
could be used in augmented reality [12]. PTAM is a feature-

based SLAM algorithm that can track many features and map 
them based on a sequence of images.  

[13] employed a video camera to help in navigation, 
environment mapping, and obstacle avoidance.  

III. METHODOLOGY 
This section investigates and compares three approaches for 
heading estimation of small UAVs in indoor scenarios. The first 
approach uses the downward camera to estimate the heading 
change using features tracking of the ground in an accumulative 
fashion. Such solution is commonly used to control UAVs' 
hovering maneuver and mainly depends on the availability of 
sufficient feature points in the ground scene, which could be a 
challenge in many situations such as flying over monochrome 
floors, highly reflective surfaces or surfaces with repeating 
identical patterns. These situations are common in indoor 
scenarios and most common on the ground surfaces. 
The second approach simply uses the magnetometer to provide 
the UAV heading. While magnetometers can offer absolute 
heading measurements if sufficiently calibrated, their 
measurements could be significantly affected by the 
ferromagnetic materials typically found in indoor 
environments. 
The third approach follows the typical visual odometry (VO) 
technique but with the forward-looking camera and with the 
removal of potentially moving objects such as pedestrians from 
the processing steps to enhance the robustness of the orientation 
change estimation. 
Using the forward-looking camera offers scenes with more rich 
features to be tracked and reduces the chances of challenging 
conditions such as monochrome surface, repeating patterns 
compared with the ground scenes. 
 

 
Fig. 1. Algorithm Overview 
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Figure 1 presents a proposed modified VO algorithm that starts 
with frame acquisition. The SURF [14] algorithm is then 
employed to extract the interest points from every frame in the 
dataset. Matching these interest points between frames helps to 
estimate the relative orientation between frames given that 
these points belong to static objects. To avoid the inclusion of 
moving objects points in the next steps, a machine learning 
technique for object detection (YOLOv3) [15] is applied to 
detect moving objects (pedestrians) and exclude them before 
the matching step. Then the RANSAC (RANdom SAmple 
Consensus) [16] technique is used to remove the outlier points  
based on compliance to fundamental matrix model between 
every two successive frames using the normalized 8-point 
algorithm [18] using the following steps [17]: 
First, both images' coordinates are normalized ݔො௜ = ො௜ᇱݔ௜ݔܶ  =  ܶᇱݔ௜ᇱ
where ܶ and ܶᇱ are the transformations (translation & scaling) 
Second, finding a solution ܨᇱ  corresponding to the smallest 
singular value of matrix A where 

 
                                                 A f = 0                              (5) 
is the set of linear equations built using 8 points 
 

                                       xො f xොᇱ = 0                                (6) 
. 
Finally, using Singular Value Decomposition (SVD), 
fundamental matrix ܨ  is computed as the closest singular 
matrix to ܨᇱ that minimizes Frobenius norm | ܨ- ܨᇱ |. 
The estimated fundamental matrix between every two 
successive frames is used to compute the essential matrix with 
the help of the internal camera parameters obtained through the 
camera calibration step. This essential matrix is then 
decomposed using SVD to estimate the relative camera 
orientation between these frames [17], where only heading 
change is considered in this research. 
 A filtering step takes place to enhance the heading change 
estimate and to filter undesirable noises by rejecting estimates 
that exceed a maximum expected derivative value.  
The heading estimation is the accumulation of the successive 
heading change values estimated in the previous steps. 
 

IV. EXPERIMENTAL RESULTS 
The performed test is carried out at the CCIT building at 

the University of Calgary. The traveled distance for the 
conducted test is around 125 meters. The employed drone in 
this research is a DJI Mavic mini. The dimensions of this drone 
unfolded with propellers are (24.5 x 29.0 x 5.5) cm, and its 
weight is below 250 grams.  
Candidate moving objects (persons) are detected and discarded 
to increase the reliability of the heading estimation.  

Figure 2 depicts an example of moving person detection using 
a deep learning algorithm for object labeling and detection 
(YOLOv3) [15].  
Fig. 3 depicts the matched features between two successive 
images using the typical VO approach. These matched points 
could affect the heading change accuracy since there is a 
moving person in both frames.   
 

 

Fig. 2. Detected moving objects such as a person (using YOLOv3) 

 

 
Fig. 3 Matched points between two images (standard matching technique) 

The matched points between the two frames, as shown in figure 
4 belong only to static objects in the scene after excluding the 
moving objects.  
 

 

Fig .4 Matched points after moving objects exclusion 
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Figures (5 and 6) present the estimated change of heading before 
the filtering step with many spikes and after the filtering step. 
The filtration step removed outliers at 5.2% of frames which 
would result in 30.4 degrees of accumulated azimuth error if not 
properly removed.  

 

 
Fig 5. Non filtered change of heading 

 

 
Fig. 6 Filtered change of heading 

In order to evaluate the different heading estimation 
approaches, four trajectories are depicted in figure 7 and 
overlaid on the map of the test site where the flight started in 
front of unit 361E near the top of the map and proceeded 
towards the lower right corridor of the map and returned back 
through the lower-left corridor. Three trajectories represent the 
drone path using the magnetometers-driven azimuth, the 
downward-vision based azimuth, and the proposed heading 
estimation using the forward camera. The fourth trajectory 
represents the path using an integrated solution using the 
downward vision and proposed heading estimation. 
While the magnetometer-based trajectory (in red color) aligns 
with the corridors' directions during most of the test, it suffered 
from some drift in front of units 301X, 302X (elevator) which 
could be because of the large metallic doors of these units. 
The obtained trajectory based on the proposed heading 
estimation (in purple color) misses some sharp turns, such as in 

front of unit 309 as the drone gets closer to the facing wall 
without enough reliable features to capture. 
The obtained trajectory based on the downward camera (in blue 
color) also drifts in some incidents such as in front of unit 303 
where the scene includes different heights downward because 
of the passed door.  
The integrated trajectory represents a compromise between the 
two involved trajectories and offers the most fitting solution 
inside the corridors. This result indicates the potential of using 
the forward camera for heading estimation or as a complement 
to the downward camera based approach or the magnetometer 
based approach. 
 

Fig.7 Comparison between 4 trajectories 

 

V. CONCLUSION 
Flying MAVs in an indoor environment is very challenging and 
typically requires many sensors to help localize the MAV. 
Cameras are among the primary installed sensors on almost all 
drones, which encourages its employment for the heading 
estimation. The proposed approach for VO managed to offer a 
competitive heading estimation by masking moving persons 
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from camera frames using deep learning.  The paper investigates 
low-cost techniques for heading estimation without depth 
sensors and compared the estimated drone trajectories based on 
the investigated approaches. The downward vision sensor has 
many limitations regarding the ground surfaces, which is 
common in many indoor scenarios. However, the drone's 
forward vision sensor could provide a competitive heading 
estimation that could be implemented solely or integrated with 
other heading estimation approaches. 
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