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Abstract— A key operational requirement for Autonomous
vehicles (AVs) is to have a highly reliable positioning at the
sub-meter lane-level accuracy. However, it is well-known that
current satellite- and perception-based positioning systems suffer
in achieving this desired accuracy in urban settings and during
rough weather conditions. This research explores the strong
potentials of the soon-to-be-deployed 5G wireless technology
that is capable of overcoming these limitations and provides an
uninterrupted everywhere positioning with lane level accuracy.
The high cell densities and large bandwidth ranges promised in
5G are anticipated to achieve ultra-reliable and ultra-low-latency
communications, which will enable the detection of received
signals at AVs with high time precision, thus improving the local-
ization accuracy. This paper discusses the merits and limitations
of using 5G small cells to provide lane level positioning services
in urban environments. We consider a 5G-based positioning
scheme employing time of arrival with the trilateration of ranges
between 5G base stations based on least-squares and an AV in
kinematic mode. We then evaluate the impact of cell densification
on achieving the desired accuracy level using the considered
positioning scheme. A professional 5G simulator was used to
assess the positioning accuracy of a vehicle moving at an average
speed of 35 km/h in a kinematic road test involving different 5G
base-stations densities on a trajectory in downtown Manhattan,
NY. Results show that an inter-cell spacing of 160 m can achieve
sub-meter positioning accuracy for AVs in typical dense urban
settings.

Index Terms—5G mmWave; Autonomous vehicles; Inter-cell
distance; Navigation; Small cells; Wireless positioning.

I. INTRODUCTION

Autonomous vehicles (AVs) promise to enhance safety,
and improve transportation system efficiency and reliability
[1]. The present AV technology relies on on-board intelli-
gence achieved by a suite of sensors and systems, which
typically consists of a global navigation satellite system
(GNSS) (including GPS), vehicle motion sensors (gyroscopes,
accelerometers, and speedometers), cameras, light detection
and ranging (LiDAR) and radar technologies. With the aid of
their connectivity, AVs will be able to share the surrounding
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environment perception and the traffic participants detection
that can lead to traffic flow improvement, and limiting the risk
of accidents [1], [2].

Nevertheless, robust and high precision positioning and
orientation information is essential for AVs at all times in
all environments [1], [2]. A key AV system requirement is to
have reliable positioning to the sub-meter level of accuracy to
ensure their preservation of lane alignment, thus avoiding ac-
cidents and efficiently maneuvering in lane changing actions.
Given the criticality and importance of these requirements,
the lane-level accuracy requirement must be maintained ev-
erywhere and under all operational environments [2]. Present
land vehicles rely on GNSS receivers for positioning services.
However, GNSS has limitations such as strong signal blockage
and severe multipath effects in urban canyons, ionospheric de-
lays, and natural or intentional interference/jamming. Backup
systems for lane-level positioning are therefore needed by
AVs in these settings [3]. Vision-based positioning (VBN)
relying on cameras can be utilized for pose estimation [4].
The ineptitude of features extraction in a degraded visual
environment is still one key limitation of VBN [4].

Conversely, light detection and ranging (LiDAR) can op-
erate in this degraded vision environment and can provide
accurate measurements of range information with respect to
the surrounding objects. Although, LiDAR is more compu-
tationally demanding to processing its 3D point cloud. In
addition, LiDAR is generally more expensive, may introduce
design restrictions, and has moving parts that induce more
possibility of error [5]. Challenging weather conditions such
as rain, snow, and fog add more limitations to the accurate
positioning estimation when using both, cameras and LiDARs.

Radars, which has been utilized in land vehicles for adaptive
cruise control, can also be used as an alternative to LiDAR
to detect objects and provide range estimation in all weathers
[6]. However, most present radar-based odometry and local-
ization techniques do not provide the sub-meter level accuracy
required by AVs [6]. Another alternative for positioning infor-
mation is the inertial navigation systems (INS), which depends
on the measurements of accelerometers and gyroscopes to
present the changes in position, velocity, and orientation of
AVs, thus allowing relative positioning and navigation with
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respect to a previously known position and orientation [3].
Nevertheless, INS-acquired positions may drift rapidly over
time, especially when low-cost Micro- Electro-Mechanical-
Systems (MEMS) based sensors are used [3].

In summary, current positioning and navigation techniques
for AVs all exhibit advantages and drawbacks, with no single
technique sufficiently versatile to address the challenge of
everywhere precise positioning. This papers thus aims to fill
this gap by exploring the strong potentials of the soon-to-
be-deployed 5G wireless technology to overcome these lim-
itations and provide an uninterrupted everywhere positioning
with lane level accuracy. The paper will first explore the
source of strength, merits, and limitations of 5G as a candidate
solution for this role in Section II. This section also summa-
rizes prior trials to use 5G signaling for positioning of cellular
user equipment (UE). Section III presents our experimental
methodology to assess the suitability and cell densification
requirements for 5G to achieve the desired lane-level accuracy
for AVs. The experimental setup and discussion of and cell
density recommendations from our experimental results are
highlighted in Section IV. Finally, Section V concludes the
paper.

II. 5G POTENTIALS FOR AV POSITIONING

The soon-to-come 5G technology exhibit many traits that
could cast it as a promising alternative technology for precise
positioning everywhere. First, the high cell densities and
extended bandwidth ranges promised in 5G can foster line-of-
sight (LOS) coverage and precise time-based measurements
from multiple surrounding 5G base-stations (BSs). These
factors can collectively be employed to improve the computa-
tion of the ranges to these BSs, thus enabling high-accuracy
trilateration-based localization using time of arrival (TOA),
time difference of arrival (TDOA), and time of flight (TOF)
based positioning approaches 1 [8]. In addition, the introduc-
tion of mmWave signaling and massive MIMO technology
in 5G would enable precise angle of arrival (AOA) mea-
surements, which can be used in performing high-accuracy
triangulation-based localization [9], [10]. The accuracy of
the AOA measurements will be significantly enhanced as the
number of antennas increase. Furthermore, 5G cells will also
be able to conduct angle of departure (AOD) measurements
as they are able to utilize beamforming techniques [10].

The combination of all these aforementioned qualities in 5G
can make it a saviour for AVs as it will enable the required
decimeter level positioning, especially in urban environments
where GNSS solutions usually fail due to their severe signal
blockage and deterioration as a result of shadowing and
multipath effects. Due to their potentials, several schemes
were recently proposed to exploit some of these qualities
separately in computing the position of typical cellular UEs,
even before their emergence as collective core solutions in

1It is worth noting that the use of TOA-based positioning in 5G settings
will impose an additional synchronization requirement between BSs and UE
[7]

5G. To achieve high precision, these schemes usually utilize
hybrid trilateration and triangulation positioning solutions as
well as numerous sensor fusion techniques, such as various
forms of Kalman filters, particle filtering, and AI.

In [11], the authors have proposed an algorithm that com-
putes the position of the UE using one BS through utilizing
TOA, AOA, and AOD of multipath signals. This is done
by first solving a data association problem, then performing
positioning and mapping via a belief propagation algorithm.
In [12], a scheme that jointly processes the AOA observations
obtained at BSs was proposed. This scheme is based on a com-
pressive sensing framework that exploits channel properties to
distinguish between LOS and non-LOS (NLOS) signals. The
work in [13] estimates the UE position and orientation along
with the unknown scatterers’ position through an iterative
Gibbs sampler using a compressive sensing approach with
iterative refinement steps. This approach helps to compute an
accurate estimation of the channel parameters, including AOA,
AOD, and TOA for each observed propagation path. [14]
presents a two-stage algorithm for position and orientation
estimation. The algorithm’s coarse estimation stage is based
on multiple measurement vectors matching pursuit, while
the fine estimation stage is based on the space-alternating
generalized expectation maximization algorithm. A recursive
Bayesian filtering named Channel-SLAM is described in [15].
This approach assumes that multipath components are emitted
from virtual transmitters, which will technically increase the
number of transmitters and hence will increase the accuracy.
The proposed algorithm then estimates the receiver and the
virtual transmitters’ positions simultaneously. Authors in [16]
propose a gradient-assisted particle filter (GAPF) estimator
to estimate the UE position, in addition to the locations of
nearby scatterers, through TOA, AOA, and AOD measure-
ments. Although many of the proposed methods have a merit,
yet, their performances are usually computed under manually
controlled scenarios, where scatterers/reflectors are manually
placed, while neglecting important details that highly affects
the 5G performance such as obstructions and diffractions from
in-path vegetation and/or dynamically moving objects.

The ultimate target of this paper is to evaluate the 5G
cell density to achieve the AVs lane-level required position-
ing accuracy.This will enable 5G-based wireless positioning
services to mitigate the existing challenges and limitations in
present positioning and navigation technologies. The scientific
objectives of this paper include:

• Building a realistic 5G wireless scenarios in challenging
downtown environments utilizing a professional 5G sim-
ulation tool able to mimic real deployment of both the
5G BSs and mobile vehicle(s).

• Developing a wireless trilateration-based position estima-
tion algorithm that employs TOA to estimate the ranges
between 5G BSs and the moving vehicle.

• Examining the performance of the developed method for
a simulated land vehicle in kinematic mode traveling in
challenging urban environment.
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Fig. 1. Downtown Manhattan, New York, NY, Google earth (up),
S 5G Channel simulator environment (down)

• Discussing the merits and limitations of the proposed 5G
wireless positioning method.

• Assessing the achievable positioning accuracy as a func-
tion of the deployment density of 5G BSs.

• Evaluating the impact of 5G cell deployment density on
achieving lane-level positioning accuracy for AVs.

In the next section, we will highlighted the employed method-
ology to achieve the above targets.

III. METHODOLOGY

In this work, we utilize a very high-resolution 5G signal
tracing simulator, namely the S 5G Channel simulator de-
veloped by Siradel, to generate comprehensive scenarios for
5G signals in a realistic urban area (e.g., Manhattan, New
York City, NY) with variable vehicle speeds and densities.
The S 5G Channel simulator is capable of

1) Importing very high precision 3D maps mimicking real
urban environments as shown in Fig. 1.

2) Deploying 5G BSs with different specifications (e.g.,
transmit power, frequency bands, carrier and antenna
configurations) at any location within this environment.

3) Collecting wireless parameters such as timing infor-
mation (e,g., TOD, TOA) and received signal strength
(RSS) from each of the individual signal paths (includ-
ing all reflections, diffractions, and attenuation across
all encountered surfaces) at both the fixed BSs and the
mobile UE/vehicle in this environment.

In this work, we use the S 5G Channel simulator to set
our experimental 5G simulation environment. Within this
environment, we conduct different 5G propagation scenarios
that pertain to the 28 GHz mmWave frequency band, which
will be used in 5G (Release 15) for small-cell deployments
and LOS communications. The BSs and UE/vehicle are using
time division duplex (TDD) technology and the transmitting
and receiving antennas are chosen to be isotropic antennas.
The transmit power was set to 43 dbm to align with the
requirements of 5G small cells [17]. For the 5G wireless
propagation channel modeling and analysis, we utilize the
Volcano3D ray-based models that predict the signal RSS,
path loss, and signal to noise ratio (SNR) on each of the
signal paths between the BS antennas and the UE/vehicle(s).
We are also considering parameters such as the LOS and
NLOS free space path loss, LOS/NLOS vegetation effects,
and those of moving surrounding objects on the signal power
levels and delays at our target vehicle. The analysis relies on
the predicted excess path-loss (EPL), which is defined as
follows:

EPL = PLIso − PLFS = PLIso − 20
λ

4πd
(1)

where the EPL is expressed in dB; PLIso is the path-loss
measured with isotropic antennas (dB); PLFS is the path-loss
in free space (from FRIIS equation); λ is the wavelength (m);
and d is the path distance (m).

In our scenario generation procedures, we deploy 5G BSs
with variable densities at different locations of the shown
3D map of a segment in Manhattan, New York City, NY. In
addition, we also create a vehicle trajectory with specifications
that accurately mimics real driving scenarios with varying
traffic densities and dynamics in the streets of Manhattan. A
blend of the 5G signal extracted parameters, such as RSS and
TOA, is employed inside our 5G positioning algorithms along
the simulated trajectories. TOA is a measurable that is based
on the measurement of the propagation delay of the radio
signal between the vehicle and one or more BSs. The vehicle
position can be estimated by converting the propagation time
to distance by multiplying the propagation time by the speed
of the signal. Estimating the location of the vehicle in a 2D
plane requires at least three BSs. The position of the vehicle
can also be calculated by using the least-squares algorithm.
The algorithm works on minimizing the sum of squares of a
nonlinear cost function. With the assumption that the vehicle
location is Xi,Yi and the time taken from the signal to travel
with the speed of light C from the BSk to the vehicle is tk,
the cost function can be derived by:

F (Xi, Yi) =
M∑
k=1

γ2kf
2
k (Xi, Yi) (2)

such that

fk(Xi, Yi) = tkC −
√

(Xk −Xi)2 + Yk − Y 2
i (3)
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where (Xk,Yk) is the 2D location of BSk, M is the number of
BSs, and γ2k is the measurement uncertainties weighing factor.
In this work, the TOA measurements of BSs and the vehicle
are used to estimate the dynamic position of the vehicle in
different scenarios using the leas-square algorithm.

In the following section, multiple experiments are con-
ducted to evaluate the positioning accuracy and assess the
5G small cell densification requirements (expressed in terms
of inter-cell distance) to enable continuous and accurate sub-
meter positioning that aligns with the AVs driving demands.

IV. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION

In this section, several simulated road experiments were
conducted to evaluate and assess the effect of 5G inter-cell
distance and cell density on the vehicle’s positioning accuracy
within the simulation environment detailed in Section III.
As explained above, the simulated experiments were built to
accurately mimic a driving scenario in downtown Manhattan,
New York City, NY. The simulated trajectory have started at
the intersection of Washington Square South and LaGuardia
Place and have ended at the intersection of West Broadway
and Spring Street. The trajectory length is approximately 800
m. Also, the simulated area includes two-way roads, high
rising buildings, and varying vegetation density which is a
challenging environment for the mmWave 5G signal propa-
gation. To ensure the practicality of the simulated scenario,
the subject vehicle was traveling in the trajectories while
being surrounded by 25 vehicles. The surrounding vehicles
were created of different types and sizes, as shown in Fig.
2. All vehicles are set to travel at an average speed of 35
km/h, which aligns with typical driving speeds in moderate-
traffic downtown settings. This experiment is repeated for
three different cell density scenarios, namely 3 BSs, 5 BSs
and 8 BSs as shown in Fig. 3, Fig. 4, and Fig. 5 respectively.

In the first experiment setup, shown in Fig. 3, 3 BSs were
deployed alternatively on the two sides of the road along the
trajectory to ensure a decent coverage and good geometry
as required for position estimation. The BSs are deployed
on street lamp posts at a height of 10 m above the street
level. In this scenario, the inter-cell distance between the BSs
was approximately 400m. The S5G simulator was utilized to
extract signal parameters for the 3 BSs at the vehicle end at
every time epoch. Every signal parameters extraction includes
measurements of the RSS and TOA.

To calculate the position, the least-squares algorithm used
the TOA measurements of the 3BSs at each time epoch.
Compared to the reference trajectory, the 2D root-mean-square
(RMS) position error was 3.68 m and maximum position error
of 5.36 m. The calculated position errors are relatively low
when compared to the deteriorated GNSS positioning accu-
racy in downtown cores. However, the estimated positioning
accuracy is not suitable for AVs, which require sub-meter
lane-level positioning accuracy. Fig. 6 shows a portion of
the positioning solution of the reference trajectory versus the
estimated position using the TOA measurements of the 3BSs

Fig. 2. The simulated trajectory, including the traffic density

setup. Considering the environment of the simulated trajectory,
it can be inferred from Fig. 3 that the dense vegetation and
high rising buildings in the first 400 m of the trajectory
limited the LOS signal components from the first and second
BSs (located at the beginning and end of this segment of
the trajectory) and resulted in severe multipath fading, which
affected the predicted TOA measurements of the BSs and in-
turn the estimated vehicle position.

In the second experiment, two more BSs were added, as
shown in Fig. 4, resulting in 5 alternatively deployed BSs
that provide more coverage at the dense vegetation area. The
inter-cell density in this trajectory is approximately 160 m. In
this trajectory, the subject vehicle traveled the same distance
at the same average speed and surrounded by the 25 vehicles
as in the first experiment. Similarly, the signal parameters are
measured in each time epoch at the BSs and the vehicle along
its entire trajectory. The corresponding positioning results
have exhibited an improved estimated positioning accuracy,
with 2D RMS error of 1m and maximum positioning error of
1.95m, a reduction of 73% and 64%, respectively, compared
to the first experiment. These gains were obtained due to the
better signal measurements and that resulted from reduction of
inter-cell distance (i.e., higher cell density). These positioning
accuracies are promising as they start to meet the needs of AV
positioning. Fig. 7 presents part of the estimated positioning
solution in the case of 5 BSs versus the reference trajectory.

To further investigate the merits of higher cell densification
on the positioning accuracy, a third experiment was conducted
with 8 BSs deployed alternatively on the two sides of the
road, as shown in Fig. 5. The cell densification reduced
the inter-cell distance to 100 m, approximately. Again, the
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Fig. 3. First simulation scenario, 3 base stations

Fig. 4. Second simulation scenario, 5 base stations

Fig. 5. Third simulation scenario, 8 base stations

subject vehicle traveled the same trajectory of the first and
second experiment in the exact same road conditions. Sim-
ilar to the other scenarios, the least-squares algorithm was
used to predict the vehicle position from the measure TOAs
measurements at the 8 BSs and the vehicle at each time
epoch. However, the estimated positioning accuracy did not
significantly change, achieving 2D RMS 0.95 m and a maxi-
mum error of 2 m. Thus, excessive cell densification does not
necessarily enhance the positioning accuracy in all cases and
environments, and are thus not needed given the extra network

complexity and the implementation cost associated with such
excessive densification. Table I summarizes the 2D RMS and
maximum estimated positioning errors in the three scenarios.
According to the results and findings, an inter-cell distance
of approximately 160 m can be sufficient to achieve the AVs
lane-level positioning accuracy requirements in typical dense
urban settings with high-rise buildings, in-street vegetation,
and dynamically moving surrounding objects.

5



Fig. 6. Window of the estimated positioning solution (3BSs scenario) versus
the reference trajectory

Fig. 7. Window of the estimated positioning solution (5BSs scenario) versus
the reference trajectory

TABLE I
2D RMS AND MAXIMUM POSITIONING ERROR RESULTS SUMMARY

No. of
BSs

RMS
error
(x)

RMS
error
(y)

RMS
error

Max
error
(x)

Max
error
(y)

Max
error

3 BSs 3.0432 2.0750 3.6833 4.2561 3.2560 5.3587
5 BSs 0.7715 0.6470 1.0069 1.3364 1.4200 1.9500
8 BSs 0.7787 0.5437 0.9497 1.5803 1.2350 2.0056

V. CONCLUSION

The trustworthiness in the safe operation of AVs is highly
correlated with several technical considerations, one most
important of which is reliable and accurate lane-level posi-
tioning accuracy everywhere. Present positioning technologies
face limitations that are either self-contained or environmen-
tally dependent, especially in dense urban settings. 5G, the
promising emerging technology, is not only a savior from
the communication capacity crunch but also opens avenues
for accurate and reliable positioning in such urbain settings

where other alternative technologies may fail. In this paper,
the benefits of 5G small cell deployments for accurate posi-
tioning was highlighted and discussed. Three dynamic road
experiments were conducted in a well-validated commercial
5G simulation environment to evaluate the impact of 5G cell
densification on achieving lane-level accuracy for AVs using
TOA based positioning. The experiments’ results have shown
that the reduction of inter-cell distance to a certain extent
can significantly enhance the positioning accuracy. It was
concluded that an inter-cell spacing of 160m can achieve the
desired lane-level positioning accuracy for safe AV operation.

REFERENCES

[1] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Internet
of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.

[2] A. Abdelrahman, A. S. El-Wakeel, A. Noureldin, and H. S. Hassanein,
“Crowdsensing-based personalized dynamic route planning for smart
vehicles,” IEEE Network, vol. 34, no. 3, pp. 216–223, 2020.

[3] A. Noureldin, T. Karamat , and J. Georgy, Fundamentals of Inertial
Navigation, Satellite-based Positioning and their Integration. Springer,
2012.

[4] W. Ci, Y. Huang, and X. Hu, “Stereo visual odometry based on motion
decoupling and special feature screening for navigation of autonomous
vehicles,” IEEE Sensors Journal, vol. 19, no. 18, pp. 8047–8056, 2019.

[5] A. Aboutaleb, A. S. El-Wakeel, H. Elghamrawy, and A. Noureldin,
“Lidar/riss/gnss dynamic integration for land vehicle robust positioning
in challenging gnss environments,” Remote Sensing, vol. 12, no. 14, p.
2323, 2020.

[6] T. Lee, V. Skvortsov, M. Kim, S. Han, and M. Ka, “Application of
W-band fmcw radar for road curvature estimation in poor visibility
conditions,” IEEE Sensors Journal, vol. 18, no. 13, pp. 5300–5312,
2018.

[7] Z. Abu-Shaban, H. Wymeersch, T. Abhayapala, and G. Seco-Granados,
“Single-anchor two-way localization bounds for 5g mmwave systems,”
IEEE Transactions on Vehicular Technology, pp. 1–1, 2020.

[8] Y. Liu, X. Shi, S. He, and Z. Shi, “Prospective positioning architecture
and technologies in 5g networks,” IEEE Network, vol. 31, no. 6, pp.
115–121, 2017.

[9] F. Wen, H. Wymeersch, B. Peng, W. Peng Tay, H. Cheung So, and
D. Yang, “A survey on 5g massive mimo localization,” Digital Signal
Processing, vol. 94, pp. 21–28, 2019.

[10] D. Kumar, J. Saloranta, J. Kaleva, G. Destino, and A. Tölli, “Reliable
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