
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

978-1-7281-6535-6/20/$31.00 ©2020 IEEE

The parallel machine job splitting and allocation 
Samah A. M. Ghanem 

FEUP, University of Porto 
Porto, Portugal 

Email: samah.ghanem@fe.up.pt 

AbstTacl-ln this paper, we propose novel optimal / near 
optimal approach to model and solve the time-dependent job 
splitting and allocation over parallel machines by exploiting the 
iterative structure of the model and the search. We compare 
global search deterministic method to genetic algorithm hueristic. 

Index Terms-Job splitting and allocation; Genetic Algorithm; 
Hueristics; Optimal schedule; Parallel Machine; Processing 
Time; Scheduling. 

I. INTRODUCTION 

Scheduling problems in industrial engineering decompose 
into two main components: the machine configuration and 
the job characteristics. Generally, machine configuration is 
categorized into single machine, parallel machines, flow shop, 
and job shop settings. In their comprehensive review, Cheng 
and Sin [1] listed five characteristics of a job: job processing 
time, due-date requirement, preemptive sequencing, prece
dence constraints, and job release time. The first two job 
characteristics are self-explanatory. The third characteristic 
allows an operation of a job to be interrupted and the machine 
is taken over by another job that is considered to be more 
urgent. The precedence constraints determine the order in 
which the jobs have to be processed. In a scheduling problem, 
if the jobs are released at different times, the condition is 
called dynamic. Otherwise, it is a static condition. Similar to 
jobs, machines may be released at different times, which imply 
dynamic machine availability. Thus, the static and dynamic 
terms apply to both job allocation and machine reuse. 

Parallel machines can be categorized into three types: equiv
alent, deterministic and uncorrelated parallel machines. The 
difference between these parallel machines systems is char
acterized by a job's processing time among the machines in 
parallel. In equivalent parallel machines system, the processing 
time of a job is the same on all machines in parallel. In 
deterministic parallel machines, each machine has a unique 
speed factor that determines jobs' processing time. Thus, the 
processing time of a job on each machine varies by the 
speed factor of the machine. In uncorrelated parallel machines, 
the processing time of a job varies arbitrarily between the 
machines. 

Uncorrelated parallel machines are very common in the 
industry. A company may invest in similar machines that have 
different capability, taking into consideration the capital cost, 
operation cost, and variation in production demand. Therefore, 
scheduling tasks on uncorrelated parallel machines is of par
ticular relevance to the scheduling in industrial systems. 

Jobs that compete for limited resources, over a set of 
uncorrelated parallel machines, may have different levels of 
priority and due date. Factors that contribute to setting due 
date of jobs are many, some of which are customer demands, 
machine capacity, and machines congestion. A job with tight 
due date, high priority, and/or high workload, may need to be 
split and processed on two machines in parallel. The need for 
splitting jobs typically appears in an operation that imposes 
large workload on a machine and requires the entire job 
completed before the next operation can be started. Thus it 
is conceivable that the operation following the one performed 
on split -mode requires a fairly reasonable processing time 
that it can be performed on one unit of machine. It means that 
the split portions of the job would need to be combined into 
one and moved over to the next machine on which the job's 
operation is scheduled to be performed. Schuften and Leussink 
[2] used a branch- and -bound algorithm to solve identical 
parallel machines scheduling with dynamic job release dates, 
general due dates, and family setup times. The objective was 
to minimize the maximum lateness of all jobs released. They 
compared the performance of applying two methods of lower 
bound to the branch and -bound algorithm by Carlier [3]. 

Glass et al. [4], and Piersma and Van Dijk [5] applied local 
search heuristics to solve the job - scheduling problem on 
uncorrelated parallel machines. The objective was to minimize 
the maximum completion time. 

Tahu search has shown remarkable success in solving pro
duction - scheduling problems, as it may allow the desirable 
consideration of a scheduling problem with multiple objec
tives. Suresh and Chaudhuri [6] considered minimizing the 
maximum tardiness and minimizing the makespan simulta
neously on uncorrelated parallel machines. They employed 
a Tahu search algorithm to solve the problem. Via a mixed 
integer programming optimization formulation that minimizes 
the weighted tardiness in [7] and [8] or via minimal completion 
time [9], the authors also proposed Tahu search algorithms 
besides others to solve the problem, providing optimal/near 
optimal solutions. 

Almost all state of the art work of parallel machines 
problems used the hypothesis that each job can be processed 
on at most one machine at a time although preemption is 
allowed. Lawler et al. [10] gave a comprehensive review 
about PMS in a class:ffication of regular performance, like 
minimizing sum criteria, minimizing maximum criteria and 
precedence constraints. Cheng and Sin [1] also gave a com
prehensive review on parallel machines problems according 

ICCSPA20 1570672384

1



to the viewpoints: completion-time-based, due-date-based and 
flow-time-based performance measures. Lam and Xing [11] 
gave a short review of new developments of parallel machines 
associated with the problems of just-in-time (IlT) productions, 
preemption with setup and capacitated machine scheduling. 

This paper addresses scheduling of jobs over uncorrelated 
parallel or partially parallel machines without the usual hy
pothesis that eacj job can be processed at one machine at a 
time. The processing time of each job would be different on 
machines of different types that constitute to the uncorrelated
parallel machine environment. Splitting jobs is considered 
in this research by utilizing a framework that optimizes the 
weights that allow a split to exist or not to exist at a portion of 
time in the machine. Therefore, the number and the size of jobs 
that need to be processed in split-modes, as well as the number 
of machines are fundamental parts of the of the scheduling 
decision. Each split portion of a job will be considered as a 
separate job but with time dependency to the previous parts 
of the formerly splitted job. 

The objective of this paper is to find optimal/near- optimal 
schedule that minimizes the sum of the maximum process
ing times of time-dependent jobs on parallel or partially 
parallel machines. Such objective is important as it allows 
for an optimal/near optimal job splitting/ordering/scheduling 
that minimizes the completion time. Besides, it breaks the 
parallel machine scheduling problem into less complex iter
ative/cyclic/geometric formulation. The assumptions are that 
scheduling environment is dynamic in both job timing allo
cation and machine availability. Besides, we allow a job to 
be split and run over multiple machines, however, taking into 
consideration the time-dependency in the order of the job(s). 

The main contributions of the paper are four fold: 1. The 
paper formulates the problem based on novel iterative or cyclic 
sturcture of the time due to job-splits per job time-dependency 
for partially parallel machines, and uses such framework for 
formulate fully parallel machines. 2. The formulation is shown 
as a solution represenation that have geometric representation, 
through which a clear insights can be extracted to adapting the 
scheduling of partially parallel machines to the case of fully 
parallel machines. 3. The paper associates to the formulation 
a probabilistic framework that allows for joint optimization of 
multiple objectives, one is the completion time via optimal 
job ordering, and another is by weighting the times, thus 
splitting the jobs over parallel machines in such a way that 
yet minimizes the completion time. 4. The paper provides 
a comparison between global search method to the genetic 
algorithm heuristic method. 

The remiainder of the paper is organized as follows, section 
II introduces the modeling and problem formulation. Section 
III introduces illustrative results and evaluation of determin-
istic and hueristic approaches. Finally, Section IV concludes 
the paper. 

II. NIM Ip Ms MODELING AND PROBLEM FORMULATION 

the problem, we rely on the iterative structure of any solution 
representation set, and the time-dependency between jobs 
to model the job processing over multiple machines, where 
parallel jobs are run after the first job takes place (for the 
formulation of the problem). The maximum span will lead to 
M x M + N - 1 time steps despite the difference in the timing 
of each job expressed as elements on each column of the 
timing matrix. Therefore, to this end, its clear that an optimal 
schedule will -geometrically- shift back such a structure to 
be all run in parallel over all machines, which corresponds to 
a timing of size M x N. While a completion time should 
correspond to the sum of the maximum of each column 
(parallel processed jobs in the time-dependent sequence). 

A. The Completion Time 

To derive the completion time of the N / M /PMS schedul
ing, first we construct a timing matrix that expresses parallel 
jobs and their dependency across machines as follows: 

0 
0 

0 
0 

0 

The timing matrix T is of size M x M + N - 1, and the non
zero element Ti,i corresponds to the time of job or job (or job 
split) j over machine i. To clarify, we provide the following 
example. 

Example: The timing matrix for the 3/3/PMS can be 
written as follows, 

(
T1,1 T1,2 T1,30 0 ) 

T = . . . T2,1 T2,2 T2,3 0 

... ... T3,1 T3,2 T3,3 

(2) 

Therefore, we can construct a simple guess about the job 
scheduling, that follows a structure that takes into consider
ation the time dependency of the processes while preserve 
the parallel runs over all machines, therefore, intuitively, the 
allocation over machines can be thought of first job over each 
machine at the same time. However, we are yet not going so 
far to the splitting for optimal/near optimal scheduling. One 
non-unique solution representation can be written as, 

T = (~~:~ ~::: ~:::) 
T1,3 T2,3 T3,1 

(3) 

Notice that the first timing matrix with the solution representa
tion in (2) expresses a partially parallel machine (PPM) with 
time-dependent sequences per job-splits. The second timing 
matrix with the solution representation in (3) expresses a fully 
parallel machine (PM) with time-dependent sequences per job
splits. The swap in the second and thrid columns entries of in 
(3) is to provide intuitions on the time-dependency that yet can 
exsist in a fully parallel machine. Most importantly is to notice 

We consider N / M /PMS an N-jobs, M-machines, parallel that the PPM formulation and solution framework differs 
machine scheduling problem. To minimize the complexity of in core points from that of PM. In particular, both systme 

2



coincide if the jobs have equal time, thus, the scheduling 
problem is not anymore a burden or if the PPM is optimized 
accross all possible permutations of of jobs and machines at 
which we preserve time dependency and parallel constraints, 
however, we forbid certain swap moves that would break 
the time-dependency requirment. Further, its worth to notice 
the geometric structure that transfers a parallelogram in time 
to a rectangle or square under a geometrical rotation which 
is translated by a swap move. We focus on this paper, on 
the PPM, future research will consider the same framework 
adapted to the PM problem. 

B. Problem Formulation 

We define a splitting strategy of jobs over time and over 
machines, taking into consideration a minimal delay. Therefore 
the completion time of such model reads as; 

M+N-1 

CTPPM = L max{I';,1}, Vi= 1, .. ,M (4) 
j=l 

Where PPM is partially parallel machine as in (2), and for the 
full parallel ordered machines, the completion time reads as, 

N 

CTPM = L max{Tj,i}, Vi= 1, .. , M (5) 
j=l 

Where PM corresponds to fully parallel machines, running 
jobs in parallel, as in (2). 

C. Partially Parallel Machines 

We focus on the PPM and define the following optimization 
problem defines the allocation with splitting constraints, 

min CTPPMVj = 1, .. , N, Vi= 1, ... , M (6) 
,r(P:T;.; )Pt(m;) 

Subject to, 

N 

M 

ETi,j = TJ, VJ E 1, ... , N 
i=l 

(7) 

LTi,j = Time- Window,Vi E 1, ... ,M (8) 
j=l 

Time - Window ~ Ti,j ~ 0, Vi E 1, ... , M, Vj E 1, ... , N 
(9) 

The constraints in (8) enforce parallel processing due to 
fixed size of the window where the jobs need to be consied 
in. We also define constraints (7) that define each demand. 
Further, the constraint (9) allows for zero or positive allo
cation over time fragments. To express the association of 
weights or probabilities of job allocation over a machine 
by p/,(mi),Vj = 1, .. ,N,Vi = 1, .. ,M that vary to allow 
optimal/near optimal splitting, we can re-write the constraint 
in (7) and (8) respectively in a more precize way as follows; 

M 

LP?,(mi)Tj = Tj, Vj E 1, ... , N (10) 
i=l 

N 

LP?,(mi)Tj = Time - Window, Vi E 1, ... , M (11) 
j=l 

Thus, consequently, the following constraints are included, 

N 

LP?,(mi) = 1, Vi E 1, ... , M, 1 ~ P?,(mi) ~ 0 (12) 
j=l 

Therefore, this allocation and splitting are joint parameters that 
allow for minimizing the completion time. 

D. Fully Parallel Machines 

The fully PM will have the following optimization problem 
to define the allocation with splitting constraints, 

min CTPMVj = 1, .. , N, Vi = 1, ... , M, Vk > j 
1r(P:p(T;,; ,Tt,k)) 

11!,(m;) 
(13) 

Subject to the same constraints in (9), (10), (11), and (12), and 
1r(P: p(., .)) does not only express all possible permutations 
of job splits over machines but also all possible moves or 
swaps between jobs that yet preserves the time dependency in 
per job-splits of jobs over the parallel machines. 

For each possible permutation along jobs over machines 
where N! permutation exsits, there yet exist (N x M)! possi
bilities of orders that correspond to possible swaps. However, 
we can forbid, or make it a Taboo to conduct any swap of the 
following shape: 

Ti,J +- I';,J+kVi = 1, .. , M, Vj = 1, ... , N (14) 

The following section addresses the implementation of the 
PPM, and establishes a comparison between a global search 
deterministic method to Genetic hueristic algorithm. Future 
research will consider addressing the implementation and 
evaluation of soultions for the setup of fully PM. 

Ill. SIMULTAITON RESULTS 

This section address the implementation and evaluation of 
the optimization problem of PPM. The evaluation is done 
using MATLAB 2015. The evaluation is done for a small size 
problem for 4 jobs, 4 machines, with 4 jobs splits. The result 
is a vector of 16 optimal weights or probabilities that allows 
splitting of jobs jointly with finding optimal job ordering 
over all possible permutations of the jobs over machines. 
The objective function is the completion time as mathematical 
framework discussed. 

The sizes of the jobs used are as follows: 
Tjl 15; Tj2 = 8; Tj3 = 20; Tj4 6;. The 
Time - Window = 13 that explains the window of 
runs over all machines is constrained to its given value. 
Therefore, the basic steps of the algorithms are as follows: 
step 1: Define an inital probability of allocation 
vector(x) = 0.25Vx(l), ... , x(16) where 4! = 16. 
step2: Define the job splitting over machines with vectors: 
JobJ+s-4 = (x(l + s), ... , x(4 + s))Tj + s - 4, s = 
{5,6, 7},j = 1; 
step3: Construct a matrix of jobs based on step2. 

3



step4: Call objective by an optimization solver (fmincon for 
global search with gradient based solvers, or GA for genetic 
algorithm heuristic). 
step5: The constraints are as defined in the previous section. 
step6: The objective function generate all possible 
permutations of jobs orders from 1,2,3,4 and associate 
job times. 
step?: Construct the timing matrix T based on one permutation 
of step2. 
step8: Find the maximum at each coulmn of matrix T, the 
sum all maximums to find the completion time. 
step9: Find the completion time and job sequence that 
corresponds to the minimum of completion times at step4. 
steplO: The solver returns values of vec(x) that allows for 
minimum fval (minimum completion time), then after a 
certain number of iterations it converges to a solution. 

The solution using deterministic (fmincon) search is as 
follows: 
X = [0.4521; 0.0392; 0.0349; 0.4567; 0.2710; 0.0574; 0.0742; 
0.2636; 0.0009; 0.5003; 0.4961; 0.0017; 0.2724; 0.1890; 
0.1900; 0.2732] 

that corresponds to the weight of each job split from 1 
to 4 that satisfies the total job size of each job, i.e., 4 
entries for each Job. The corresponding minimal comple
tion time is: fval = 32.178. This setup provides timing 
of 14.7433; 5.3295; 19.9794; 5.5473. Better results might be 
obtained with different initial value of x in step 1. 

The solution using genetic algorithm heuristic (GA) search 
method is as follows: 
X = [0.3311; 0.0000; 0.2424; 0.0157; 0.0000; 0.0065; 0.0000; 
0.8098; 0.3589; 0.2107; 0.0422; 0.0000; 0.0000; 0.0997 
0.4 794; 0.0000] 

The corresponding minimal completion time is: 
fval 17.2028. This setup provides timing of 
8.8389; 6.5300; 12.2363; 3.4744. Despite the results of 
GA provides much less completion time, however, we 
see that the solution does not lead to fullfilling all job 
demands. Besides, we see that deterministic approaches tend 
to dostribute the weights evenly, while the GA distribute 
that weightes in a more radical way, where the zeros in the 
vector(x) imply that lots of jobs are not associated with any 
resources over certain machines. 

It is clear that the deterministic method using fmincon 
outperforms GA in two sides, one is the precize allocation 
of jobs, and that the jobs always fullfill their total time 
requirments. 

IV. CONCLUSION 

This paper addresses the parallel machine job splitting and 
optimal ordering scheduling problem to minimize the sum 
of the maximum completion time over all jobs across all 
parallel machines. The paper presents a novel formulation 
for the problem of PPM and PM, and provides evaluation of 
deterministic and heuristic approaches in solving such setup. 
It is clearly shown that deterministic approaches provides well 

suited solutions than heuristic methods. However, for problems 
of large size in terms of number of jobs and number of 
machines, it might be better to consider near optimal heuristics 
that can reduce the computational complexity. Future research 
will consider the fully PM with the prohibited moves discussed 
in a Taboo search heuristic. 

REFERENCES 

[1] T. Cheng and C. Sin, "A state-of-the-art review of parallel
machine scheduling research," European Journal of Operational 
Research, vol. 47, no. 3, pp. 271 - 292, 1990. [Online]. Available: 
http:/ /www.sciencedirect.com/science/article/pii/03 7722179090215W 

[2] J. Schutten and R. Leussink, "Parallel machine scheduling with release 
dates, due dates and family setup times," Int. J. Production Economics 
46-47/119--125, 1996. 

[3] J. Cartier, "Scheduling jobs with release dates and tails on identical ma
chines to minimize the makespan," European J. or operations research , 
pp. 298-306, 1987. 

[4] C. A. Glass, C. N. Potts, and P. Shade, "Unrelated parallel machine 
scheduling using local search," Mathematical and Computer Modeling, 
pp. 41-52, 1994. 

[5] N. Piersma and W. Van Dijk, "A local search heuristic for unrelated 
parallel machine scheduling with efficient neighborhood search," Math
ematical and Computer Modeling, pp. 11 -19, 1996. 

[6] V. Suresh and D. Chaudhuri, "Bicriteria scheduling problem for unre
lated parallel machines," Computers and Industrial Engineering, vol. 30, 
no. I, pp. 77 - 82, 1996. 

[7] F. Subur, "A methodology for real-time scheduling of jobs with splitting 
on unrelated parallel machines," Master Thesis, 2000. 

[8] ?nci Sar?~i~ek and C. <;:elik, "Two meta-heuristics for 
parallel machine scheduling with job splitting to minimize 
total tardiness," Applied Mathematical Modelling, vol. 35, 
no. 8, pp. 4117 - 4126, 2011. [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0307904 XI I 00 I 03X 

[9] W. Xing and J. Zhang, "Parallel machine scheduling with splitting jobs," 
Discrete Applied Mathematics, vol. 103, no. 1-3, pp. 259-269, 2000. 

[10] E. L. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B. 
Shmoys, "Chapter 9 sequencing and scheduling: Algorithms 
and complexity," in Logistics of Production and Inventory, ser. 
Handbooks in Operations Research and Management Science. 
Elsevier, 1993, vol. 4, pp. 445 - 522. [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0927050705801896 

[ 11] K. Lam and W. Xing, "New trends in parallel machine scheduling," In
ternational Journal of Operations and Production Manageme nt, vol. 17, 
no. 3, pp. 326-338, 1997. 

4


