
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

Communications design in multi-robotic systems

Manu Nair∗, Sidney Givigi†
∗ Department of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, ON, Canada

Email: manu.nair@rmc.ca
† School of Computing, Queen’s University, Kingston, ON, Canada

Email: sidney.givigi@queensu.ca

Abstract—This paper describes the process for the design of
communications in multi-robot systems using two approaches:
centralized and decentralized architectures. Both approaches
achieve joint collaboration through inter-robot coordination via
exchange of sensor data and state information. As shown in a
previous paper, depending on the tasks and the environment, the
effects of explicit communications on centralized and decentral-
ized control architectures for cooperative tasks are different. A
comprehensive design process of the whole system for multi-robot
task allocation will be discussed. Issues with the network design
are introduced and possible solutions provided.

I. INTRODUCTION

As discussed in [1], the communication among robots in

multi-robot systems (MRS) needs to be taken into consider-

ation prior to the design of the system as it may impact its

performance. The reason is that MRS depend on how task

allocations are performed, since robots interact with each other

and coordinate tasks to complete a common goal [2].

In order to properly design MRS, many design factors have

to be considered based on the requirements of the system.

Some considerations include the robot team size, the operating

environment and the composition of the robot teams, to name

a few. Detailed considerations include what kind of task

allocation and route planning algorithms to use, the control

architecture of the system, and how the information exchange

between system nodes is handled. Since MRS research is still

in its infancy and a common design framework is not always

easy to identify when designing the systems [3], approaches to

MRS design were non-structured [4] [5], with most solutions

being ad-hoc. In general, there was little standardization

of how MRS problems were generally solved. One of the

challenges with MRS design is how to optimally assign a set

of robots to a set of tasks in order to optimize the overall

system performance [6] [7] [8]. To address part of this issue,

[4] proposed a taxonomy for classifying Multi-Robot Task

Allocation (MRTA) problems.

Since then, other researchers have presented different ways

of classifying MRS based on the application domains [9] and

extending [4] taxonomy to include dependencies [7]. With

available MRTA taxonomies, the task allocation component

of MRS design is more streamlined with a possible set of

solutions being made available. Given the abstract nature of

these taxonomies, they do not fully capture all the design

requirements for all MRS designs, and in particular, these tax-

onomies do not address real world, practical communications

requirements that are often a bottleneck in MRS [10] [11]. In

addition, there is a wide range of robotics applications where

system performance is inherently tied to robot heterogeneity

and environmental effects [12], yet it is also excluded from

current taxonomies to allow them to be widely used.

This paper presents the communications design for two dif-

ferent approaches for a particular MRS problem. A centralized

approach is derived and the issues of coordination due to

the lack of bandwidth are discussed. Then, a decentralized

approach is presented and coordination is further discussed.

This paper is divided as follows. Section II introduces the

task for both the centralized and decentralized approaches. The

simulation environment is discussed in section III. Section IV

presents the design of the centralized architecture. Section V

discusses the decentralized architecture approach. Section VI

presents the results for some use cases. Section VII discusses

network issues of the implementations, and the conclusions

are presented in section VIII.

II. TASK SETUP

Testing and validating any MRS remains a challenge. There

are many variants of robotic systems that it becomes difficult

to benchmark results and compare them with the research

community. Most researchers find their own ad-hoc solution to

testing research which becomes more difficult to benchmark

against other works. In practice, most test and validation

scenarios end up being ad-hoc to some degree, but researchers

have attempted to standardize this. The basis for the test and

validation testbed for this paper is based around the work

by [13], that defined a realistic testbed to conduct multi-robot

testing that included details on how the tests were configured

and the metrics used to determine overall performance.

Their testbed is designed around ROS and MORSE simula-

tor although it can run on similar simulators such as Gazebo.

The authors do provide the full ROS packages to enable

testing, though these packages have not been maintained with

ROS upgrades over the years. That said, their testbed is a

unified platform where only the experimenter’s coordination

strategies are tested, allowing for a benchmarking platform

across the research community. A graphical representation of

their testbed is shown in Figure 1.

The testbed focuses on three key areas: Robot (the type,

physical models and computing capabilities), Fleet (number

of robots, homogeneity) and Environment (the terrain to be

explored) [13]. While the type of robots and environments

indirectly affect the communications, it is the number of robots

ICCSPA20 1570634451

1



Fig. 1. MORSE testbed architecture

in the fleet that has the biggest impact on bandwidth and

range [13].

However, there are challenges with using this testbed as

defined. The packages and ROS distribution used to develop

the testbeds are legacy and are not supported or tested with the

current distributions of ROS. The Virtual Machine (VM) units

used by the authors for each robot were based on Ubuntu

12.04.1 LTS and ROS Groovy. Therefore it is difficult to

use this testbed as some newer packages are not backward

compatible nor are the packages used in the testbed forward

compatible. Without proper documentation, it is difficult for

the community to maintain this particular testbed in future

releases of ROS. Other limitations include requiring computer

clusters or computers with lots of computing power.

Other considerations for not using this particular testbed

as designed is the way communications modeling is handled.

For bandwidth-heavy applications, [14] suggests adjusting the

publish rates of various nodes in order to manage the network.

While this will prevent simulation failure in large deployments,

it may not necessarily be a true representation of the state of

communications within the system.

Finally, the testbed also relies on a 1000 Mb/s (125 MB/s)

Ethernet network, which may not be practical for common

cases where only wireless networks are available. The au-

thors’ testbed also simulates the communication link based

on calculating the distance between the robots in simulation

and adjusting the communication costs as needed. This may

not be a realistic representation of real world events and

communication losses could be more complex.

III. SIMULATION SETUP

For validation, it is imperative that communications com-

ponents are tested using external wireless adapters to simulate

real-world scenarios. While [13] can be used as a first approxi-

mation of a simulation setup, their specific software tools were

not portable. Figure 2 shows the robot controller setup used

with specific packages identified [1].

Fig. 2. Software architecture

Fig. 3. Centralized Network Topology

One of the design goals for our testbed is the ability to

switch from different control architectures, scalability and

changing operating environments (worlds) as required. As with

the approach used by [13], defining the metrics used and test

automation is a necessity.

There are two different configurations for simulation. One

for centralized, and the other for decentralized. In both setups,

it is assumed that all the robots will operate in a common envi-

ronment where communications coverage and mode remained

constant for comparison.

IV. CENTRALIZED ARCHITECTURE DESIGN

Usually, centralized design is simpler than a decentralized

one. However, when communication is considered, centralized

approaches may very soon generate issues, especially with the

availability of bandwidth.

The initial attempt at setting up a centralized system led to

interesting technical problems which will be briefly discussed.

In the original setup, there were three robots connected via a

local, dedicated wireless network as shown in Figure 3. This

is a common topology used in centralized network setups.

However, this topology’s performance will degrade as more

robots are added.

A centralized approach will generally work for a small

group of robots, but extending it to a larger set will be a strain

on communications [15]. However, in this setup, even a small

2



Fig. 4. Initial Centralized Node Layout

group of three robots proved to be too network bandwidth

heavy for the system to work using the software packages

for exploration. Figure 4 shows the software road-map for the

initial design.

During initial testing, all robots reported several errors

which included warning messages from the process node re-

sponsible for navigation indicating that packet losses occurred

(marked as red in Figure 4). Specifically, there are two issues:

one is that some navigation goals are being dropped and

the other issue is packets arriving at their respective robot

computers with mismatched timestamps. The latter is caused

by the built-in time function that applications use to time stamp

each message sent in ROS. To elaborate, the message filter

packages uses timestamps to ensure that only relevant data

is sent and received. Specifically, the TimeSynchronizer and

TimeSequencer filters ensure that messages are synchronized

and temporally ordered. In this case, the messages sent by the

ROS master to the robots had mismatched timestamps, making

the robots think that either the data they received is in the past

or it had to extrapolate into the future.

In centralized systems, the global planner has access to

robot state information at varying levels (Limited, Partial or

Full) [1] and makes decisions based on that. In this setup,

the ROS packages required full information to make optimal

decisions but at a high bandwidth cost. In this case, full

information to the global planner caused the network to fail

as the data required exceeded the channel capacity.

Aside from providing full state information to the global

planner, the network will also require additional bandwidth

to support the measurement tools that are being used.

Measurement-induced errors and failures have been seen in

other experiments [16].

Due to all these issues, another design, a hierarchical

centralized architecture [1], was necessary. In this design,

the leader (robot 1) concentrates all the information from

the other robots. Therefore, te change to the hierarchical

model minimizes network traffic as full state information

is not needed any longer. The disadvantage is a reduction

in performance. Nevertheless, this is the practical way to

Fig. 5. Final Centralized Node Layout

Fig. 6. Decentralized Node Layout

implement the communications in a centralized architecture.

Figure 5 shows the software layout for the final design [1].

V. DECENTRALIZED ARCHITECTURE DESIGN

Counterintuitively, the decentralized design was easier to

define than the centralized one, even though, it was more com-

plicated to implement. The main reason for this design in the

context of this paper is that by using cooperative algorithms,

efficiency of communication is improved [17] by removing the

need of information exchange with the centralized entity [15].

The decentralized architecture is shown in Fig. 6 [1].

In the figure, one can see that each node in the network

has all the processes necessary for the robot’s behaviour. The

task allocation is done separately and the robots merge the

maps only when data is received from other robots. Therefore,

communications requirements are dropped substantially from

the centralized architecture described in Section IV.

Both solutions look at solving a cooperative mapping prob-

lem. RVIZ (Robot Visualization) is a powerful tool that allows

the user to visualize the data generated in the system. It is not

part of the simulation package, but instead is another node that

3



Fig. 7. View of Simulated World

Fig. 8. Overview of the ROS Navigation Stack

subscribes to the data and displays it. RVIZ can also be used

to publish data, to aid in troubleshooting or to provide system

input. Figure 7 shows the environment on which the robots

operate. It also shows how a robot map topic is visualized, by

reading and displaying the sensor data.

For the task at hand, the ROS package parameters for

multirobot map merge were modified to publish the merged

map data at different frequencies [1].This is done to control de

amount of data that is sent over the communication channels.

The base controller is shown as an output from the navigation

stack in Fig. 8. The costmaps reflect the area that has been

uncovered by the robots: locally and globally.

Robots can navigate an environment using a preexisting map

or create one as it explores an unknown environment. One

method of exploring is by using frontier detection. Frontiers

are defined as regions between known space and unknown

space [18]. Figure 9 shows an example of the boundary

between free and unknown space, with the frontier detected

at the edge of the contrasting spaces. By assigning a robot to

the frontier, the robot’s sensors can map the unknown space

and advance the frontier.

In order to navigate and map an unknown space, a fron-

tier exploration (ROS) package is required. There are many

ROS packages available for frontier detection using different

Fig. 9. Frontier Location

Fig. 10. Multi-master Topology

algorithms but the package selected for this research is based

on a RRT algorithm [18], as it contained a built-in task

allocator. This algorithm works by building a link (tree) from

the location of the robot outwards to unexplored areas to find

new frontiers. The tree then expands, contouring to detected

obstacles, until it reaches a frontier edge and then assigns the

robot a new target. The task is complete when the cells in the

whole map are mapped and the environment is bounded.

The communications are done over a multi-master setup.

The topics that are required to be shared need to be iden-

tified and the package handles the synchronization. In this

configuration, the multimaster fkie is setup using multicast

protocol and is comprised of two nodes, a master discovery
and a master sync node. The master discovery is responsible

for actively searching for other masters within the communi-

cations range and once identified, registers new host topics

as defined. The master sync node connects the discovered

masters to allow for exchange of information. Figure 10 shows

an overview of how the robots are connected and the topics

that are shared using multimaster fkie.

VI. RESULTS

We will present the results for centralized merging rates of

0.01 Hz and 0.10 Hz as for higher frequencies, the exploration

time does not change [1]. We will then present some network

time synchronization issues that need to be considered in

future designs

4



Fig. 11. Network Usage at 0.01 Hz by Leader robot

A. 0.01 Hz Merging Rate

For this test, the merging rate is set to 0.01 Hz. Using a

similar setup as the baseline single robot test, 20 iterations

of the experiments are run and the results are comparatively

worse than the baseline single robot test. The total explore

time is approximately 49 seconds longer than the single robot

test.

Analysis of the data was conducted to determine the cause

of the increase in explore time over the single robot test. At

the start of the experiment, all three robots are assigned the

global map area to explore, which is the normal start sequence.

However, the global assigner cannot start the exploration until

it receives the initial merged map from the leader robot. In

this case, the initial map could take upwards of 100 seconds

to be published. Once the map has been received, the global

assigner sends target exploration goals to the robots.

The global assigner determines the frontier points from

several sources, including the global costmaps and the merged

map. Since we are employing a leader/follower topology, the

merged map and the leader robots global costmap are only

available for the global assigner to use. With such a low

frequency to publish the merged map, the assigner has to

determine target goals based on the global costmap of the

leader robot. The rate at which the three robots move overlaps

the rate at which the global assigner can send it valid points.

This causes the robots to inefficiently explore regions based on

partial information until a merged map is received and more

valid exploration points are determined.

The global assigner receives the updated map every 100

seconds and can calculate new frontier points based on this.

Even if the whole map area has been physically covered by

one of the three robots and collected by the leader robot, the

experiment only concludes when the central controller has the

full map and the global assigner determines that there are no

further frontiers to explore. With this test frequency, this can

only occur every 100 seconds and timing of when the merged

map is received could add time to exploration time.

In terms of network usage, the 0.01 Hz test consumed

the lowest network bandwidth as it publishes the data less

frequently. Figure 11 shows the network traffic of three exper-

iments at 0.01 Hz. From this plot, we can see that the network

traffic increases slightly over the duration of the single test as

the contents of the merged map increases.

B. 0.10 Hz Map Merging Rate

In [1], it was reported that 0.10 Hz is an inflection point

frequency for the centralized architecture. At this frequency,

the global assigner receives the updated map every 10 sec-

onds and could adequately assign the robots to explore the

environment. Every 10 seconds, the central controller is able

to send the robots relevant exploration targets because the

overall merged map would not have changed much due to

the robot velocity. After this point, there overall explore times

remains at an average of 259 seconds and a standard deviation

of σ = 14.9.

VII. NETWORK ISSUES

During the experiments, the network throughput and speeds

are monitored across the system. While conducting the decen-

tralized tests, no noticeable issues were found with the network

connection (over WiFi).

However, during the centralized system setup, there were

excessive errors and warnings indicating timing issues, specif-

ically missing messages and extrapolation into future errors.

The source of the problems are two-fold: one is the need to

synchronize the clocks between all the computers and the other

is the data capacity of the network.

A. Network Time Synchronization

In ROS, most common messages will be timestamped.

Timestamps are used to tag each message with the time it was

taken, and is based on the UNIX epoch time (computer time).

In systems that have various latencies between computers, data

will arrive at different times and consequently results in cases

where data is required to be extrapolated into the future or past.

In most cases, this appears as a warning, but the data packet

is dropped, leading to challenges coordinating the robots. The

causes of these types of errors are either CPU processing

capabilities or out of sync clocks. Since the computers used

had low CPU usage at the time, this was ruled out as a cause.

A workaround used is to employ a time server such as

Chrony. The ROS master is also set up as a time server with

all other computers being clients. The software ensures that

all clocks are synchronized with very low latency.

B. Network Capacity

A second problem had to do with the capacity of the

WiFi network. In this case, the network is built around an

IEEE 802.11g wireless router. For this particular router, the

maximum speed is listed as 54 Mb/s (6.75 MB/s) at 2.4

GHz. This amount is the physical layer rate and is the

theoretical maximum assuming an isolated, optimal distanced

and interference free setup. In the experimental setup, the

router is placed within one meter from all four computers and

had a dedicated network assigned. The actual speeds are also

a lot lower once the protocol overheads are considered.

5



Since ROS operates at the TCP layer, the actual speeds

would be considerably lower as system overhead must be con-

sidered. Using the experimental setup, the maximum through-

put is measured at approximately 8.5 MB/s. In a pure cen-

tralized setup, each computer (robot) will need approximately

3-4 MB/s depending on the configuration. It is clear that the

current network setup will not be adequate for four computers

(made up of three robots). WiFi networks will negotiate to the

lowest adapter speed, so it is important to ensure all robots

are using similar Ethernet adapters (which is the case here).

VIII. CONCLUSIONS AND FUTURE WORK

This paper analyzed a use case for communications in MRS.

A detailed description of the design process for a centralized

and a decentralized architectures was provided.

A simulation environment that uses ROS was introduced.

The steps of implementing both architectures in a multi-

robot application were presented. Issues with the central-

ized architecture were discussed. Discussions of results with

specific focus on the centralized architecture were provided.

Some common network issues of the implementations were

discussed with the hope that other researchers can avoid some

issues.

In the future, the architectures could be tried with different

communications technologies such as 5G to assess how newer

approaches can benefit the design of robotic systems.

REFERENCES

[1] M. Nair and S. Givigi, “The impact of communications considerations
in multi-robot systems,” in 2019 International Conference on Commu-
nications, Signal Processing, and their Applications (ICCSPA), pp. 1–6,
March 2019.

[2] N. P. Lucas, A. K. Pandya, and R. D. Ellis, “Review of multi-robot
taxonomy, trends, and applications for defense and space,” Unmanned
Systems Technology XIV, vol. 8387, pp. 1–10, 2012.

[3] A. Marino Advisor Ing Fabrizio Caccavale Co-Advisor Ing Gianluca
Antonelli, “A Null-Space-based Behavioral Approach to Multi-Robot
Patrolling,”

[4] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” International Journal of Robotics
Research, vol. 23, no. 9, pp. 939–954, 2004.

[5] B. P. Gerkey, “ON MULTI-ROBOT TASK ALLOCATION,” CRES
Technical Report CRES, pp. 3–12.

[6] A. M. Khamis, A. M. Elmogy, and F. O. Karray, “Complex task
allocation in mobile surveillance systems,” Journal of Intelligent and
Robotic Systems: Theory and Applications, vol. 64, no. 1, pp. 33–55,
2011.

[7] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

[8] B. Woosley and P. Dasgupta, “Multirobot Task Allocation with Real-
Time Path Planning,” Proceedings of the Twenty-Sixth International
Florida Artificial Intelligence Research Society Conference (FLAIRS-26
Conference), St. Pete Beach, FL, USA, p. 574579.

[9] R. N. Darmanin and M. K. Bugeja, “A Review on Multi-Robot Systems
Categorised by Application Domain *,” 25th Mediterranean Conference
on Control and Automation (MED), no. July, pp. 701–706, 2017.

[10] G. M. D. Araújo, a. R. Pinto, J. Kaiser, and L. B. Becker, “Cooperative
Robots and Sensor Networks,” Studies in Computational Intelligence,
pp. 1–18.

[11] J. D. Labrado, B. A. Erol, J. Ortiz, P. Benavidez, M. Jamshidi, and
B. Champion, “Proposed Testbed for the Modeling and Control of
a System of Autonomous Vehicles*,” 2016 11th System of Systems
Engineering Conference (SoSE).

[12] L. Parker, “Task-oriented multi-robot learning in behavior-based sys-
tems,” in Proceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IROS ’96, vol. 3, pp. 1478–1487, IEEE, 1996.

[13] Z. Yan, L. Fabresse, J. Laval, and N. Bouraqadi, “Building a ROS-Based
Testbed for Realistic Multi-Robot Simulation: Taking the Exploration as
an Example,” Robotics, vol. 6, no. 3, p. 21, 2017.

[14] Z. Yan, N. Jouandeau, and A. A. Cherif, “A Survey and Analysis of
Multi-Robot Coordination,” International Journal of Advanced Robotic
Systems, vol. 10, p. 399, dec 2013.

[15] L. Liu and D. A. Shell, “Optimal market-based multi-robot task alloca-
tion via strategic pricing,” Robotics: Science and Systems, vol. 9, no. 1,
pp. 33–40, 2013.

[16] R. Worst, H. Surmann, E. Zimmermann, T. Bagosi, T. Svoboda,
M. Achtelik, and T. Consortium, “DR 6.1: Multiple asynchronous sorties
to assess a large-scale static disaster area,”

[17] W. P. N. D. Reis and G. S. Bastos, “Multi-Robot Task Allocation
Approach Using ROS,” Proceedings - 12th LARS Latin American
Robotics Symposium and 3rd SBR Brazilian Robotics Symposium, LARS-
SBR 2015 - Part of the Robotics Conferences 2015, pp. 163–168, 2016.

[18] H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration
based on multiple rapidly-exploring randomized trees,” in IEEE Inter-
national Conference on Intelligent Robots and Systems, 2017.

6


