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Abstract—Hierarchical Bayesian models (HBM) are powerful
tools that can be used for spatiotemporal analysis. The hier-
archy feature associated with Bayesian modeling enhances the
accuracy and precision of spatiotemporal predictions. This paper
leverages the hierarchy of Bayesian models using the Gaussian
process to predict long-term traffic status in urban settings. The
Gaussian process is used with different covariance matrices:
exponential, Gaussian, spherical, and Matérn to capture the
spatial correlation. Performance evaluation on traffic data shows
that the exponential covariance yields the best precision in spatial
analysis with the Gaussian process, while the Gaussian covariance
outperforms the others in temporal forecasting.

Index Terms—Uncertainty, hierarchical Bayesian, spatiotem-
poral, Gaussian processes.

I. INTRODUCTION

Recently, traffic flow modeling has attracted great attention
in intelligent transportation and traffic management fields,
whereby modeling historical and recent traffic data can de-
scribe and predict traffic status. This can serve the traffic
management sector to improve the transportation network
infrastructures and support real-time decision making. The
availability of enormous traffic data plays an essential role in
developing highly efficient models for traffic flow estimation
and prediction. In addition, recent statistical studies show the
growing needs to control traffic congestion and reduce its
negative impact, especially in urban settings where congestion
can cause significant delays and accidents. INRIX in 2017 [1]
estimated the total number of hours lost in peak travel times
in Los Angeles as 102 hours per driver. In the same report,
Boston ranked the highest in waiting time during driving with
an average of 14% due to traffic congestion. Similarly, London
and Paris have the highest traffic congestion in Europe, with
drivers spending an average of 56 hours in traffic at peak travel
times. These studies have also revealed that traffic congestion
is a major concern in large cities due to the significant overload
on public transportation services and limited road occupancy,
especially on routes leading to busy business districts and city
centers [2].

In order to better understand the roots of traffic congestion,
a robust model must be developed. However, the study of
traffic data modeling has encountered obstacles in recent years
due to a number of factors such as data reliability, data
classification, and data integrity. Therefore, these models suffer
high inaccuracy compared to real-time data measurements.

In addition, different approaches to traffic modeling have
different structure complexity to target various criteria. Con-
sequently, traffic modeling has been associated with complex
processes in terms of implementation and data processing.

Modeling the traffic flow of massive traffic data requires
comprehensive analysis and a robust methodology to estimate
the uncertainty and detect the variance effects on various out-
comes. This inspired many studies and researchers to develop
methods that minimize uncertainty in predicted outcomes.
Bayesian methods offer a statistical framework for computing
the uncertainty using probability [3]. The principle of Bayesian
theory is based on updating subjective beliefs in light of new
data until the uncertainty of the hypothesis is minimal. As
more data arrives, new beliefs are formed and the hypothesis
becomes less uncertain.

Limitations and gaps in the traffic modeling studies encour-
aged extensive research to be carried out in order to reduce the
uncertainty of the traffic flow prediction. Recent developments
in the Bayesian modeling approach propose a hierarchical
structure where the model is built in multiple levels. Each
level is implemented through a number of iterations using the
Markov Chain Monte Carlo (MCMC) algorithm in order to
define the prior, the joint likelihood of model parameters,
and the joint posterior. The three levels (aka. sub-models)
as described in the literature build the HBM model’s func-
tions. Bakar and Sahu [4] developed a hierarchical Bayesian
approach using three sub-models: data model, process model,
and parameter model in its hierarchy. The results of their
research support the space-time and air-pollution pair datasets
to predict the daily 8-hour maximum ozone concentration.
The performance evaluation of their study using GP with
the Matérn covariance matrix shows high prediction accuracy
with the used data. Utilizing their approach with different
covariance matrices to predict the traffic flow data should
make an essential contribution to the domain of spatiotemporal
analysis. [4].

In this paper, we apply the HBM approach in the traffic do-
main and use the GP as the parameter model. The estimation of
model parameters is carried out using Bayesian inference. To
obtain an accurate spatial prediction and temporal forecasting,
we test four different spatial correlation matrices: exponential,
Gaussian, spherical, and Matérn. Constructing the temporal
forecasting is based on two different units of time: day and
month. We use a dataset collected by the Chicago Transit
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Authority (CTA) about bus traffic counts to apply our model
and conduct a spatiotemporal traffic prediction.

II. LITERATURE REVIEW

Traffic modeling has been an active area of research that
has gained a lot of traction over the past few years due to
advancements on different modeling techniques. A consider-
able amount of literature has been published on spatiotemporal
modeling using Bayesian approach, however, these models
are not performed on large space-time data [5]. Also, most
of the literature on hierarchical Bayesian models is centered
around the usage of this approach in specific applications such
as environment, healthcare, and finance [6], [7]. Chen et al.
[8] used S-Kriging for short-term traffic speed prediction on
freeways excluding the temporal component. Lu et al. [9] also
used S-Kriging as a form of Bayesian inference to study the
concentration of PM10 in air at different neighboring locations
and perform spatial prediction.

Much of the available literature on methods that are
Bayesian-based have been developed to accurately predict the
values from joint space-time data such as Gaussian process
regression methods [10]. However, the latter method estimates
model parameters by approximating the posterior distribution
rather than using Markov Chain Monte Carlo sampling. Meth-
ods based on approximating the posterior provides a poor es-
timation of model parameters. The computational advantages
of using Markov Chain Monte Carlo in Bayesian inference
appears in the estimation of the likelihood, especially when
having many integrals [11].

Some authors have been mainly interested in Non-Bayesian
models which are not process-based such as the Generalized
Additive Models [12]. These models are implemented based
on a dynamic relationship between the value and the spatial
points coordinates, yet, these models are not process-based
which means that these models do not integrate random
collection of points of spatiotemporal processes. Consequently,
it impacts the spatiotemporal autocorrelation.

Brogan et al. [13] apply hierarchical Bayesian models to
study engine noise and estimate the noise characteristics and
the separation filters. The thesis of this study indicates that
using Gibbs sampler with their given prior in their study about
engine cycles led to a longer computational time to verify the
hypotheses they used, thus, they conclude that the influence
of the observed prior on the MCMC algorithm is significant.

Bakar et al. [4] propose a spatiotemporal model to predict
the ozone concentration level in New York City. The model
is implemented in their spTimer R package to use one of the
three models; GP, autoregressive (AR), or GPP. The Gibbs
sampler is used to estimate the likelihood functions. We
employ the same framework in the traffic domain to better
understand the traffic behavior using hierarchical Bayesian
models. Although our study did not apply all three different
models on the traffic data, it applies four different covariance
matrices using the GP model. The findings of the performance
of the covariance matrices conclude that covariance matrices

perform differently based on different characteristics of the
dataset.

III. METHODOLOGY AND DATA

We can summarize the fundamental concept of Bayesian
theory into three keywords: prior, likelihood, and posterior.
The prior is an initial belief to begin with based on the current
information and can be updated when new information arrives.
The likelihood is the joint distribution of the data given the
model parameters β, and σ. Model parameters can be found
after updating the prior. Lastly, the posterior is the conditional
probability distribution of our dependent variable θ which
depends on and data and the prior. The posterior is computed
as the product of the prior and likelihood [11].

Generally speaking, the Bayesian inference can be per-
formed as follows: (1) define the prior empirical probability
distribution or the assumptions for the hypothesis; (2) com-
pute the marginal likelihood probability of the data using a
sampler (e.g., MCMC) to generate random samples from the
probability distribution [14]. In each sample, we calculate the
marginal likelihood probability, which contains all the relevant
information to evaluate the evidence. However, estimating the
marginal likelihood typically is a difficult task because we
have to integrate all model parameters; (3) determine the
posterior, which is the probability distribution of a particular
value of the parameter after having seen the whole data [15].
The Bayesian inference theory is formally expressed as:

posterior ∝ prior × likelihood

A. Hierarchical Bayesian Modeling

The hierarchical Bayesian model can be structured as three
levels of probabilistic models [4]: the data model, the process
model, and the parameters model. These three levels (or
stages) can be represented as follows:

First level [data | process, parameterdata]
Second level [ process | parameterprocess]

Third level [ parameterdata, parameterprocess]

In the first level, we obtain the data model according
to a certain process Y(sij ;t) and some errors εl(sij ;t) that
are assumed to be independently normally-distributed (εi ∼
N(0, σ2)). The data model is described as shown below:

Z(sij ;t) =(sij ;t) +εl(sij ; t) (1)

The process model in Equation 2, captures the relation-
ship of the underlying nature expressed by the data. The
process model can be one of three; Gaussian process GP,
Auto-Regressive AR, or Gaussian Predictive Process GPP. In
Equation 2, the process Yl(sij ;t), is expressed by a Gaussian
process µ(sij ;t) plus some errors η(sij ;t).

Y(sij ;t) = µ(sij ;t) + η(sij ;t) (2)

The third level of the hierarchical modeling defines the
model parameters. According to Equations 1 and 2 , these
parameters are: the variance of εl(sij ;t), the variance of η(sij ;t),
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the coefficients of the GP, and φ which defines the spatial
correlation.

Generically, Equation 3 represents the structure of estimat-
ing the model parameters of the hierarchical model using
Bayesian inference. Starting with the Gaussian process, Y(sij ;t)
which follows a normal distribution conditioning on the model
parameters θi. While θi is a vector containing ση , βGP , and
φ. The prior distribution of θi conditioning on φ where φ
will have a prior distribution that follows a gamma or uniform
distribution.

yi ∼ p(y|θi)
θi ∼ p(θ|φ)

φ ∼ p(φ)

(3)

p(θ, φ|y) ∝ p(y|θ, φ) (4)

From Equation 4, the posterior distribution is proportional to
the likelihood being conditional on both θ, and φ multiplied by
the prior for θ and φ. Based on the conditional independence
rules and knowing that our data is independent of φ, if we
know θ, we can take the joint distribution and break it down
into conditional distribution p(θ|φ) and multiply it by the
distribution of p(φ). Equation 5 formalizes these steps, which
is derived from Equation 4.

p(θ, φ|y) ∝ p(y|θ, φ) = p(y|θ)p(θ|φ)p(φ) (5)

1) Gaussian Processes Model: The GP includes the tem-
poral effect as well as the spatial effect denoted in Equation
6 which captures the space-time relationship. [16].

[Y (s, t) : s ∈ Ds, t ∈ Dt] (6)

Where Y is the value of the traffic flow at location s in
time t, and Ds is a vector of spatial coordinates (si, sj), and
i, j = 0, . . . , m, where m is the total number of locations.
For the temporal component, we have two time components
denoted by l and t that represent the short time component,
and the long time component, respectively. In our dataset we
only use the day and month at the observed spatial points.
The dataset has 28 locations, so to decompose Y in Equation
6 where the spatial process at fixed time t0 and the temporal
process at fixed spatial point s0 denoted by Equation 7, and
Equation 8, respectively [16]:

Yt0 = (Yt0(s0), . . . , Yt0(s0 + 28∆))′ (7)

Ys0 = (Yt0(s0), . . . , Yt0+28(s0)′ (8)

And by combining Yt0 and Ys0 as follows:

Yt0(si)|Yt0(sj) : j 6= i ∼ Gau((φt0/(1 + φ2t0))Yt0(sij−1)

+Yt0(sij+1), σ
2
t0/(1 + φ2t0))

(9)

Where the dimensional distributions are determined by
the mean function µ(s, t), and the covariance matrices
cov(Y (s, t), Y ((s, t)′) for all spatial points s ∈ D. Since we

are using the GP to build the HBM, we define the hierarchy
of the GP in Equation 10:

Yl(sij ;t) = f(xl)(sij ;t) + εl(sij ;t) (10)

The long time unit is denoted by L, where l = 1, ..., L and
the short time unit is denoted by T l, where t = 1, ..., T l.

Our dataset is represented by Yl(sij ;t), while εl(sij ;t) is a
random error that we assume to be independently normally-
distributed that follows εi ∼ N(0, σ2), and we can breakdown
Equation 2 as follows:

η(sij ;t0) = (η(s11;t1), . . . , η(sm;tl))
>′ (11)

µ(sij ;t0) = (µ(s11;t1), . . . , µ(sm;tl))
>′ (12)

The mean µ(sij ;t0) can be represented by χβ, where β rep-
resents the vector of regression coefficients, and χ represents
the matrix of the covariates between time and space. Thus,
Equation 2 can be written as:

f(xl)(sij ;t) = χl(si;t)β + η(sij ;t) (13)

Different covariance matrices show significant positive re-
sults on the prediction outcomes where estimating the corre-
lation for the space-time effect on a specific observed value is
a major step in fitting the model. In the following, we briefly
describe these four covariance matrices.
Covariance Matrices: In GP, the spatial correlation parameter
is calculated by applying one of the four covariance matrices:
exponential, Gaussian, spherical and Matérn. We refer to the
covariance function by Sη which includes three parameters: φ,
ν and the distance between two spatial points si and sj that
will be calculated as ‖ si − sj ‖.

Sη = φ+ ν + coordinates (si − sj) (14)

When the distance between si and sj increases, their
correlation level decays, and we refer to this by the parameter
alpha where it dominates the rate of the correlation of si and sj
locations; ν is the smoothness parameter that softens the fitted
curve of the model. The spTimer package uses exponential as
the default covariance matrix. The decay of the correlation
function is calculated as:

CovE(si, sj ;φ) = exp− (2
√
ν ‖ si − sj ‖ φ) (15)

Where φ and ν > 0. Similarly, in the Gaussian covariance
matrix, the square of the exponential covariance matrix is
calculated as:

CovG(si, sj ;φ) = exp− (2
√
ν ‖ si − sj ‖ φ)2 (16)

The spherical covariance matrix takes in consideration the
range “distance” over pairs of spatial points. The covariance
vanishes when the distance between si and sj is zero [17].

CovS(si, sj ;φ) = 1− 1.5× (2
√
ν ‖ si − sj ‖ φ)

+0.5(2
√
ν ‖ si − sj ‖ φ)3

(17)
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The Matérn covariance matrix includes the modified Bessel
functions of the second kind that is sometimes called the
Basset functions, and it is given by Equation 18:

CovM (si, sj ;φ, ν) =
1

2ν−1Γ(ν)

(2
√
ν ‖ si − sj ‖ φ)νKν(2

√
ν ‖ si − sj ‖ φ)

(18)

Gibbs Sampler: The Gibbs sampler is an MCMC algorithm
that generates a sequence of observations (samples) from a
specific multivariate distribution of the hierarchical model
parameters.

Algorithm 1 Gibbs Sampler

initialize y(0) ∼ q(y)
for iteration m= 1,2,3,. . . do

ym1 ∼ p(Y1 = y1|Y2 = ym−12 ), Y3 = ym−13

ym2 ∼ p(Y2 = y2|Y1 = ym1 ), Y3 = ym−13
...
ymD ∼ p(YD = yD|Y1 = ym1 ), YD = ym−1D−1
end

Gibbs sampling allows us to examine each variable and
calculate its conditional distribution. For example, assume
the random variables Y1, Y2, . . . , Yn. The value for each
random variable y1, y2, . . . , yn is initialized from the prior
distribution. In each iteration m, the sampler produces the
samples of y1, y2, . . . , yn as follows:

ym1 ∼ p(Y1 = y1|Y2 = ym−12 ), Y3 = ym−13 (19)

ym2 ∼ p(Y2 = y2|Y1 = ym1 ), Y3 = ym−13 (20)

ym3 ∼ p(Y3 = y3|Y1 = ym1 ), Y2 = ym2 (21)

The Gibbs sampler stops when all generated sampling val-
ues have the same distribution size. Algorithm 1 provides the
procedure that the Gibbs sampler uses to generate the samples.
Samples are generated by examining each random variable
one at a time and obtaining samples from the conditional
distributions of each variable. A sequence of pairs of random
variables is generated like: (Y 1, y1), (Y 2, y2), (Y 3, y3).

IV. SPATIOTEMPORAL GP PREDICTION

A. Study Area and Data Preprocessing

The data we use in this study is collected from the Chicago
Transit Authority (CTA). Public transit plays an essential
role in the development of large cities and are considered
an economical way of transportation. However, this mode of
transportation is often involved in traffic congestion [18]. Un-
derstanding the public transit traffic data will help improving
public transport services and generally enhances road traffic
management.

The study area includes 29 sensors distributed mostly in
downtown Chicago. The data includes bus count, speed, and
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Figure 1: The bus traffic data exploration plots.
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Figure 2: The average volume of the bus traffic count per day.

the number of sensor readings at a 10-minutes time interval
from August 2018 until December 2019.

A quick exploration of the data reveals that the bus count
increases during the weekdays and in a month as shown in
Figure 1 (a) and (b). Figure 2 provides more visual analysis of
the bus count data and presents the aggregate number of buses
for each day. It shows three horizontal lines where the dash
line refers to the mean, solid line represents 10% higher than
mean, and dotted line indicates 10% less than the mean. The
reason we are showing this visual analysis is to illustrate the
variations in traffic patterns over days, which does not exhibit
normal distribution. Unlike most of the other spatiotemporal
analysis techniques, HBM can efficiently deal with data that
does not have a normal distribution [19].

Based on our visual analysis, we empirically determined that
the minimum distance between sensors should be 0.1 km to
capture the spatial correlation. The approach doesn’t perform
accurately with short-time units ”hour” due to implementation
limitations in the spTimer package. That’s why we opted to use
the daily aggregate data. We train the model on 21 locations
for the time period starting from 2019-01-01 to 2019-01-29.
Testing the model is conducted on the 8 locations that will be
defined in the Gibbs sampler.

V. RESULTS AND DISCUSSION

We observe that the GP approach achieves an accurate pre-
diction with the bus traffic dataset. A number of performance
criteria are used to measure the model accuracy including the
mean absolute error(MAE), root mean squared error (RMSE),

4



Table I: Spatial prediction error.

Prediction error Matérn spherical exponential Gaussian
MAE 7.6839 8.1898 7.6723 41.8726
RMSE 9.1833 9.7754 9.1444 53.6856
MAPE 37.2477 41.5263 37.1951 201.6881

Table II: Temporal forecasting error.

Forecasting error Matérn spherical exponential Gaussian
MAE 11.4243 11.4738 11.2184 15.2290
RMSE 13.1387 13.6285 12.8379 19.1728
MAPE 44.5595 45.0353 44.0292 73.0119

Figure 3: The residuals versus the estimated responses.

and mean absolute percentage error( MAPE). We compare
the MAE, RMSE, and MAPE outputs of the GP for the
spatial prediction with the exponential, Gaussian, spherical
and Matérn covariance matrices as shown in Table I. The
exponential covariance provides the best performance with
the GP in the spatial prediction and is slightly better than
the spherical and Matérn. The Gaussian provides the lowest
spatial prediction accuracy out of the four covariance matrices.

Table II provides the accuracy error of the temporal fore-
casting for the different covariance matrices. Interestingly,
we observe similarities in the accuracy error between the
exponential, spherical and Matérn. The Gaussian provides a
better accuracy in the temporal forecasting than it does in the
spatial prediction.

In Figure 3, we see the relationship between the residuals
and the estimated responses that present the predicted response
using the exponential covariance matrix. It appears that resid-
uals roughly form around the zero line. Also, most of the
predicted responses fall on the estimated regression line. These
points may explain the relatively good correlation between
residuals and fits.
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Figure 4: The auto-correlation coefficient estimation using one
MCMC chain.
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Figure 5: The auto-correlation coefficient estimation using one
MCMC chain vs. multiple MCMC chains.

Figure 4 presents the correlograms of the auto-correlation
coefficient function at different lags where we can see a
significant level of correlation between different lags. The
ACF plot shows that the current value is constantly determined
by the previous values. This means that the daily values are
dependent on each other.

We assess the MCMC performance by applying three dif-
ferent diagnostics: Geweke’s convergence, Gelman and Rubin,
and auto-correlation. Gelman and Rubin’s diagnostic requires
multiple MCMC chains run in parallel to compare the auto-
correlation coefficient of the multiple MCMC chains as shown
in Figure 5. The estimated variance of each parameter within
the MCMC chain is very small, which indicates that the
MCMC chain has converged. The statistical results of the
Gelman and Rubin’s diagnostic match the results in Figure
5 where the convergence diagnostic is less than 1.1, which
also means that the chains are converged.

Figure 6 shows the Gelman and Rubin plot which support
the observed results by showing the growth of the Gelman and
Rubin scale-reduction factor for each parameter as the number
of iterations increases in a chain of 5000 samples.
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Figure 6: The Gelman and Rubin’s diagnostic for a chain of
5000 samples.

VI. CONCLUSION

This study applies hierarchical Bayesian modeling using
the Gaussian process to predict traffic status. The Gaussian
process does not apply on data with missing values, however,
the normality of the data distribution can be improved by using
the transformation log and the square-root using the MCMC
algorithm. We use the Gibbs sampler to obtain the samples
from the traffic data and use these samples to build the spatial
prediction and temporal forecasting. Different covariance ma-
trices are used with the Gibbs sampler including exponential,
Gaussian, spherical and Matérn. The results show that the
exponential, spherical and Matérn provide a higher accuracy
compared to the Gaussian covariance matrix. Results also
confirm that HBM can be used effectively in spatiotemporal
analysis and yields high prediction accuracy.
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