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Abstract— Beamforming is signal processing techniques used 

to shape the antenna array pattern according to prescribed 
criteria. In this paper, a comparative study is presented for 
various adaptive antenna beamforming algorithms.  Least Mean 
Square (LMS), Normalized Least Mean Square (NLMS), 
Recursive Least Square (RLS) and Sample Matrix Inversion 
(SMI) algorithms are studied and analyzed. we also consider some 
possible adaptive filters combinations, such as LMS with SMI 
weights initialization, and combined NLMS filters with a variable 
mixing parameter. These algorithms are simulated for a linear 
antenna array with different sizes, and results are discussed in 
terms of their Convergence speed, Max SLL and Null depths.    

Keywords— Adaptive beamforming, LMS algorithm, NLMS 
algorithm, RLS algorithm, SMI algorithm. 

I. INTRODUCTION  
As a key technology for modern wireless communication 

systems, especially 5G networks, adaptive beamforming 
became an intense field of study. The tendency of involving 
much higher frequencies and higher order modulation increased 
the demand for maximizing the power utilization which can be 
achieved by focusing the RF resources where they are most 
needed. At the same time, we can eliminate any source of 
interference or improve the signal to interference noise ratio 
(SINR), this can be achieved using adaptive beamforming 
techniques [1-3]. Adaptive beamforming is a signal processing 
approach that spatially filters the antenna array input by steering 
the antenna beam toward the desired signal and forming nulls at 
the directions of interference [4].  

Least Mean Square (LMS), Normalized Least Mean Square 
(NLMS), Recursive Least Square (RLS) and Sample Matrix 
Inversion (SMI) algorithms are widely used for antenna array 
adaptive beamforming, these algorithms can be characterized in 
terms of their convergence properties and computational 
complexity [5-8]. In this paper, we first discuss these algorithms, 
followed by implementing possible combinations of those 
algorithm, such as LMS with SMI weights initialization, and 
combination of two NLMS filters algorithm with a variable 
mixing parameter.  

II. SYSTEM MODELING 
 As shown in Fig. 1, consider a model of a linear antenna 
array which is composed of N uniformly distributed isotropic 

antenna elements, the output of the array is given by the 
following equation [5]: 

(݇)ݕ                                      = .(݇)ுݓ                             (1)                            (݇)ݔ

where w(k) is the array weight vector and x(k) is the received 
signal vectors.  

 
Fig.1. Adaptive antenna array system. 

The problem that adaptive beamforming addresses is how to 
adjust the array weights in order to drive the array output y(k) to 
the desired output d(k), accordingly we may define an estimation 
error e(k): 

                            ݁(݇) = ݀(݇) − ுݓ .                         (2)                        (݇)ݔ

Adaptive algorithms are basically used to minimizes the 
resulting error statistically, which is to solve [6]: 

                                      Min(3)                           [(݇)∗݁(݇)݁]ܧ                           

with E[.] representing the expectation operator.  

III. ADAPTIVE BEAMFORMING ALGORITHMS 

A. Least Mean Square (LMS) Algorithm  
The LMS algorithm is a stochastic gradient algorithm. Its 

computational simplicity, easy coding and robustness, are 



significant features make it one of the most used adaptive 
filtering algorithms [6].  

 
Given the received signal vector, ݔ(݇) , and the desired 

output, ݀(݇), the LMS algorithm updates filter taps or array 
weights iteratively, using the following equation [5]: 

 
݇)ݓ                     + 1) = (݇)ݓ +                       (4)                 (݇)∗݁(݇)ݔߤ

where ߤ is the LMS algorithm step size.  

It turns out that convergence of the filter is related to the step 
size, that is ߤ should satisfy the following condition, 0 < ߤ <
௠௔௫ߣ/2  where ߣ௠௔௫  is the maximum eigenvalue of the input 
vector autocorrelation matrix.  

B. Normalized Least Mean Square (NLMS) Algorithm 
The LMS algorithm weights update is driven by the input 

vector x(k), which raises the probability of having a gradient 
noise amplification problem in case of large x(k) values. 
Moreover, the convergence of the LMS algorithm is relatively 
slow, hence, the normalized least mean square (NLMS) 
algorithm is proposed to overcome the gradient noise 
amplification problem and more importantly significantly 
increase the convergence rates. As shown in (5), compared to 
the LMS algorithm, the step size of the NLMS algorithm is time 
varying, since the weights corrector term is normalized with 
respect to the norm of input vector weights update.  

 
݇)ݓ           + 1) = (݇)ݓ +

ே௅ெௌߤ

ଶ‖(݇)ݔ‖ + ߙ
 (5)              (݇)∗݁(݇)ݔ

 

where ߤே௅ெௌ is the NLMS adaptation constant and α is a small 
positive constant to avoid division by zero. 

C. Recursive Least Square (RLS) Algorithm 
In the method of least squares, we can find the optimum filter 

taps that minimizes the estimated error by projecting the desired 
output vector on the column space of the input sequence matrix 
using the modified weighting vector: 

(݇)∗ݓ                              =  ற݀(݇)                                  (6)ܣ

where றܣ = ்ܣଵି(ܣ்ܣ) is the pseudoinverse of the input 
sequence matrix ܣ. 

 The RLS algorithm is developed from the method of least 
squares using the matrix inversion lemma, so we can obtain the 
updated weights vector ݓ(݇)  from the old-squares estimate 
݇)ݓ − 1) without performing any matrix inversion calculations 
by utilizing the input vector sequence. The RLS algorithm is 
firstly initiated by setting the weights vector ݓ(݇) and the 
correlation matrix inverse P (k) as follows [5-6]:  

w (0) = 0, and P (0) = δ-1 I, where is a small positive constant.  

 The weights vector and the correlation matrix inverse are 
updated as follows: 

(݇)ݓ                     = ݇)ݓ − 1) +  (7)                              (݇)∗ߦ(݇)݃

 ܲ(݇) = ݇)ଵܲିߣ − 1) − ݇)ܲ(݇)ுݔ(݇)ଵ݃ିߣ − 1)              (8)   

where ߦ(݇) = ݀(݇) − ݇)ுݓ − (݇)ݔ(1  is the prior estimated 
error and ݃(݇) is the gain vector which is defined as: 

                         ݃(݇) =
݇)ଵܲିߣ − (݇)ݔ(1

1 + ݇)ܲ(݇)ுݔଵିߣ −  (9)              (݇)ݔ(1

where ߣ is the forgetting factor, a positive constant less than 1. 

  Although the RLS rate of convergence is faster than the LMS 
algorithm, but in terms of calculations complexity the RLS 
algorithm is significantly costly.   

D. Sample Matrix Inversion (SMI) Algorithm 
 In the LMS algorithm system goes through many iterations 
to drive the output toward the desired signal, and in case of 
rapidly changing signal characteristics, system may not 
approach an acceptable convergence. A solution to this is to 
calculate the time average estimate of the correlation matrix by 
using ܭ-length block of data, this approach is called sample 
matrix inversion (SMI).  

 By dividing the input data into k blocks, we define the array 
correlation matrix as the following [7-9]: 

                                 ܴ௫௫ = ܺ௄(݇)ܺ௄
ு

(݇)                             (10) 

where ܺ௄(݇)  is the kth block of input vector ranging over ܭ 
samples of data.  
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We can also define the desired output vector by: 

  ݀(݇) = [݀(1 + (ܭ݇ ݀(2 + (ܭ݇ … ܭ)݀ +  (12)      [(ܭ݇

and the estimate of correlation vector by: 

(݇)݌                                   = ଵ
௄

݀∗(݇)ܺ௄(݇)                              (13) 

The weights vector update equation is given by: 

(݇)ݓ                                = ܴ௫௫
ିଵ

 (14)                         (݇)݌(݇)

 One drawback of the SMI algorithm is that it is not sufficient 
for large number of antenna elements, but it can be used for 
weights initialization when combined with other algorithms as 
in [9]. 

E. Combination of two NLMS filters with variable mixing 
parameter  
As noted for both LMS and NLMS algorithms, convergence 

rates depend on the step size.  On the other hand, there is a 
tradeoff between convergence speed and the ability of tracking 
the desired signal in a satisfactory manner.   

In order to increase convergence rate and ensure system 
robustness, many combined adaptive filters are proposed using 
an adaptive mixing parameter [11-13] (݇)ߣ.     



Consider a system of two combined NLMS filters with 
different adaptation constants, ߤଵ  and ߤଶ, with ߤଵ >  ଶ, then theߤ
output y(k) is given by: 

(݇)ݕ                  = (݇)ଵݕ(݇)ߣ − (1 −  ଶ(݇)                   (15)ݕ((݇)ߣ

 As proposed in [12], ߣ(݇) is constrained to the interval [0,1] 
using an auxiliary variable ߙ(݇) , where ߣ(݇)  =  ଵ

൫ଵା௘షഀ(ೖ)൯
 , 

and ߙ(݇) is updated as follows:   

݇)ߙ  + 1) = 

(݇)ߙ           + (݇)ଵݕ)(݇)ఈ݁ߤ − 1)(݇)ߣ((݇)ଶݕ −  (16)      ((݇)ߣ

To ensure a continuous adaptation of the mixing parameter, 
,+ߙ−] is limited between (݇)ߙ ߙ +] [12],[13].  

The combined weight vector is defined as: 

(݇)ݓ                = (݇)ଵݓ(݇)ߣ − [1 −  ଶ(݇)               (17)ݓ[(݇)ߣ

and each filter updates its weight vector using the NLMS 
algorithm:  

݇)௜ݓ           + 1) = (݇)௜ݓ +
௜ߤ

ଶ‖(݇)ݔ‖ + ߙ
௜݁(݇)ݔ

∗(݇)        (18) 

I. SIMULATION RESULTS 
In this section, a linear array is used to evaluate each 

algorithm with different number of elements. The array receives 
five narrowband signals, a desired signal and four interference 
signals from the azimuth of 35, 50, 10, -30 and -45 respectively. 
The signal to interference noise ratio (SINR) is 30 dB and the 
spacing between array elements is set to be 2/ߣ.  

The step size for both LMS and NLMS are 3 × 10ିଷ and 
1.2 respectively, and the RLS forgetting factor is 0.9 and ߜ is 
0.01, whereas the combined NLMS parameters are ߤଵ = 0.9, 
ଶߤ = 1.7 and ߤఈ = 1. 

Figures 2 to 4 show the normalized array gain for the LMS, 
NLMS, RLS, SMI, LMS/SMI and combined NLMS algorithms 
respectively, using 8, 16 and 21 elements. It can be observed that 
the RLS, SMI and LMS with SMI weights initialization show 
deep nulls, on the other hand, they have the highest SLL. 
Whereas LMS, NLMS and combined NLMS introduce the 
lowest SLL, where both NLMS and combined NLMS have 
deeper null than LMS. However, the LMS shows better 
performance when using higher number of elements.  

Figures 5 to 8 show the resulting MSE versus iterations for 
the LMS, NLMS, RLS, LMS/SMI and combined NLMS 
algorithms with different array sizes, and Fig.9 shows the MSE 
of the SMI algorithm for each block of data. The SMI, RLS, and 
LMS/SMI algorithms have faster convergence rates compared 
to the LMS, NLMS, and combined NLMS algorithms. Again, 
the performance of LMS shows improvement when using higher 
number of elements, whereas SMI gives higher MSE with larger 
array size. Compared to the LMS algorithm, the LMS/SMI 
algorithm MSE steps to the optimum value due to SMI weights 
initialization, whereas in the combined NLMS algorithm, an 
improved convergence rates are achieved compared to the 
NLMS algorithm. 

 

 
Fig.2: Normalized gain for 8 elements antenna array using different adaptive 
algorithms.  

 
Fig.3: Normalized gain for 16 elements antenna array using different adaptive 
algorithms.  

  
Fig.4: Normalized gain for 21 elements antenna array using different adaptive 
algorithms.  

  

 
Fig.5: MSE versus iterations for LMS algorithm with different number of array 
elements.  
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Fig.6: MSE versus iterations for NLMS algorithm with different number of array 
elements.  

 
Fig.7: MSE versus iterations for RLS algorithm with different number of array 
elements.  

 
Fig.8: MSE versus iterations for LMS/SMI algorithm with different number of 
array elements.  

 
Fig.8: MSE versus iterations for Combined NLMS algorithm with different 
number of array elements.  

 
Fig.9: MSE versus iterations for SMI algorithm with different number of array 
elements.  

II. CONCLUSION  
In this paper, we presented and analyzed various beam 

forming algorithms such as: Least Mean Square (LMS), 
Normalized Least Mean Square (NLMS), Recursive Least 
Square (RLS), Sample Matrix Inversion (SMI), LMS with SMI 
weights initialization, and combined NLMS filter with a variable 
mixing parameter. Simulation results for a linear array, show 
that each algorithm has advantages and weaknesses. In the terms 
of convergence speed and nulls depth RLS and SMI show better 
performance, whereas LMS, NLMS are simple and give lower 
SSL. However, it can be observed that some of these weaknesses 
can be reduced by using combined algorithms, where LMS/SMI 
and combined NLMS filters have an improved convergence 
speed compared to the LMS and NLMS algorithms with an 
acceptable increase in the computation complexity.  
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