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Abstract 

Object counting is an active research area that gained more 

attention in the last few years. Since deep learning methods 

outperformed all other object detection algorithms, the design of 

efficient object counting algorithms became more realistic and 

achievable. Numerous algorithms targeting various challenges 

associated with object counting have been introduced.  In a smart 

transportation system, vehicle counting plays a crucial role as it 

helps in creating autonomous systems, and better planning for 

roads.   In this paper, we present an efficient object counting 

system and assess its performance using a dataset of 20 different 

videos. The proposed system leverage an efficient object detector, 

and object tracker to perform the counting. This paper combines 

different approaches to count objects by tracking them, but 

performs the tracking operation efficiently. Therefore, the 

proposed systems achieve high accuracy values with low 

processing time. 
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I.INTRODUCTION 

      Object detection algorithms based on deep learning 

methods completely outperformed others. They can be divided 

into two main categories, the one-stage approach, and the two-

stage approach [1] [2] [3]. The one-stage approach uses a fixed 

number of predictions on a grid to define the bounding boxes 

around the object, then it tries to classify each bounding box 

and map it into one of the different classes defined by the neural 

network. YOLO (You only look once) [4] [5] [6], and SSD 

(Single Shot Detector) [7] [8] are one stage approach detection 

algorithms that are highly prioritized.  

      The two-stage approaches calculate the position and size of 

the bounding boxes using a neural network before 

classification. Therefore, the two-stage approach is more 

accurate, but it involves more computational power because 

two neural networks are implemented, one for forming the 

bounding boxes, and one for classification. R-CNN (Region-

based Convolutional Neural Networks) is a two-stage approach 

algorithm that is widely used. There are two other versions of 

R-CNN, Faster R-CNN, and Mask R-CNN [9] [10]. 

     Object tracking algorithms are extremely useful in many 

applications, they can be divided into four main categories [11], 

matching based tracking; filtering based tracking, class-based 

tracking, and fusion-based tracking. More recently, several 

deep learning methods are combined with other algorithms to 

improve tracking performance [12]. 

     Correlations filters correlate two samples to find the 

similarity between them. KCF (Kernelised Correlation filter) 

got more acceptance because it has shown higher accuracy and 

speed compared to other correlation filters based trackers [13].  

    Object Counting based on deep learning methods is an active 

research area that attracted many scholars in recent years. Some 

tried to establish an object counting quantitative comparison 

between background subtraction, Viola-Jones, and Deep 

Learning Methods on four different datasets [14]. Others 

investigated YOLO potential in object counting. One group 

build a traffic counting system based on YOLO.  They have 

utilized simple distance calculations to achieve the purpose of 

vehicle counting, and they added checkpoints to alleviate the 

consequence of false detection [15] [17]. 

    Similarly, another group used YOLO as a primary object 

detector, and they have combined it with correlation filters to 

build an object counting system [16]. Once an object is 

detected, they start tracking it until it gets out of the frame or 

disappears. However, this is a computationally expensive 

algorithm since it tracks every object in the frame. Moreover, it 

is more vulnerable to tracking failures as objects that disappear 

and reappear might be counted twice. 

     Finally, to avoid counting the same object twice, and to 

reduce the computational complexity, [18] suggested detecting 

objects every N frames, then using Kanade–Lucas–Tomasi 

feature tracker (KLT) to track counted objects. 

     In this paper, we propose an efficient object counting system 

that integrate deep learning (YOLO) for object detection, and 

Kernelised Correlation Filter (KCF) for object tracking. The 

proposed system utilizes a simple distance calculation, and 

KCF tracker to count objects once. The tracking is implemented 

in a narrow region instead of the whole frame to reduce errors 

and time complexity.  The proposed object counting algorithm 

is fast so that there is no need to detect objects every N frames. 

It works frame by frame as will be explained later in the paper. 

The rest of this paper is organized as follows. Section II 

describes the proposed system architecture. Section III presents 

the datasets preparations, and Section IV shoes the performance 

evaluation of the proposed system. Finally, Section V 

concludes the paper. The system has been tested against a 

dataset of 20 different videos. These videos varied in the view 

angle, speed of motion for the objects, density of objects and 

the image quality.  
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II.  SYSTEM ARCHETICTURE 

     The High-level Architecture of the system is shown in Fig 1.  

The system starts with the video segmentation stage where the 

upcoming video stream is segmented into N frames. The system 

feeds these frames sequentially to the object detection algorithm 

(YOLO). YOLO output a list of detected objects in each frame. 

Then, these detected objects are the input for the object counting 

algorithm where the actual counting is implemented. The object 

counting stage updates the total objects count if the input to the 

object counting stage satisfies the conditions as will be explained 

in the next sections. This process will be repeated for N frames. 

 

A. Initial Setup 

     The initial setup required is the positioning of the crossing line 

in the best location such that the maximum accuracy is achieved. 

The crossing line is the line in which objects are counted once 

they crossed it. Since YOLO is the primary and only object 

detection in the system, the position of the line will affect the 

system accuracy as YOLO performance changes with objects 

sizes, shapes, and orientation. Fig 2 shows two different positions 

of the crossing line. The red line is clearly in a better position as 

the number of objects detected by YOLO is more than the number 

detected in the yellow line region. The second disadvantage of the 

yellow line is the blind spot region where the cars in the most left 

lane might be missed if large objects (Trucks) are passing in the 

adjacent lane (Center lane). In our system, we choose the position 

of the crossing line manually by inspection. It is worth to note that 

throughout all experiments we conducted, we can conclude that 

the best position for the crossing line should be within the center 

of the frame, as YOLO tends to be more accurate. 
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B. Object Detection Stage 

     YOLO defines a collection of bounding boxes with different 

aspect ratios. The aspect ratios are calculated by applying the k-

means clustering algorithm on all bounding boxes in the training 

dataset [7]. The bounding boxes are fed to the neural network to 

classify each bounding box and map it to one of the predefined 

classes. The detection network has 24 convolutional layers and 

two fully connected layers at the end. In this stage, each frame is 

possessed with YOLO to find out the bounding boxes for all 

objects in the current frame. These objects alongside with the 

output from the tracking stage to is used to find the target object. 

YOLO processes each frame independently from previous 

frames; thus, it can recover from object loss in one frame. These 

features make YOLO excellent candidate for object detection, 

unfortunately, not for object tracking. Another advantage of 

YOLO is the ability to detect scale change, where some of 

tracking algorithms suffer the most.  

 

 

 

Fig.1  Proposed Object Tracking System Archeticture 

Fig.1  Proposed Object Counting  System Archeticture 

Fig.2  Different positions of the crossing line 
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C. Object Counting  stage 

     The object counting stage work flow is shown in Fig 3. For all 

detected objects after being filtered in the object detection stage, 

the distance between each object and the crossing line is 

calculated. If the distance between an object and the crossing line 

is less than a threshold τ, and if the object is not in the tracked 

objects list, the system starts tracking this object using KCF 

tracker, increment the total objects count by one, and add this 

object to the tracked objects list. The system continuously updates 

the state of each tracked object in the tracked objects list using the 

KCF tracker. Once an object is added to the tracked objects list as 

shown in the green box in Fig 4, the system will keep tracking it 

until it gets far from the crossing line by an offset α. Finally, the 

system will discard any tracked object, which gets far from the 

crossing line by more than the predefined offset α.   We have 

chosen the threshold τ and the offset α experimentally; therefore, 

they might vary slightly from one street environment to another. 

In our system, the threshold is 10 and the offset is 20-pixel values. 

 

 
 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To make sure that any counted object is counted once, the system 

will track objects that have been counted until they get  

far the crossing line by the offset α.  The intersection over union 

(IoU) defined by equation [1] between the YOLO bounding box 

and the KCF tracker bound box is used to find if the system 

counted an object or not. If the IoU between two objects is greater 

than a margin µ (0.8 in our system), then the system will ignore 

this object, and it will not count it. The main motivation for this 

architecture is the fact that an object might stand within a distance 

less than the threshold for more than one frame due to congestion 

or other reasons, which will result in counting this object multiple 

times. We have to make sure that any counted object is defined to 

the system in a way that the system will be aware that this object 

is counted. The only possible way is to track every counted object 

until it become far from the crossing line by the offset α safe 

enough to conclude that this object has gone. Fig 5 shows an 

object that the system is tracking. The green box is for the KCF, 

and the blue box is for YOLO. In this case, the IoU is more than 

0.9. 

 

𝑰𝒐𝑼 =
𝐚𝐫𝐞𝐚 𝐨𝐟 𝐨𝐯𝐞𝐫𝐥𝐚𝐩

𝑨𝒓𝒆𝒂 𝒐𝒇 𝒖𝒏𝒊𝒐𝒏
        (𝟏) 

 

 
Fig.4  Object being added to the tracked objects list 

Fig. 5  Intersection over Union  

Fig.3  Object Counting algorithmand flow diagram 
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The proposed framework has the advantage over other counting 

by tracking algorithms because the tracking is done for short 

period of time. Instead of tracking the object from the point it 

enters the frame to the point it leaves the frame, our system is 

tracking the object only from the moment it crosses the crossing 

line to the moment the object get far from the crossing line by the 

predefined offset. The proposed algorithm is more robust to 

tracking failure compare to other algorithms that track the object 

through the whole frame since the probability of tracking failure 

is less when the tracking region is small. Most of the cases, the 

system tracks any given object for 10 frames at most with 

approximately no change in the background. Recall that we have 

mentioned that the position of the crossing line affects the 

accuracy; therefore, it is better to choose the position of the 

crossing line such that there is no change in the background. 

Furthermore, the proposed system has less computational 

complexity as it tracks few objects at the same time; the system is 

continuously removing old objects from the tracked objects list. 

Finally, as the system is continuously removing objects from the 

tracked objects list, the KCF tracker will have less templates to 

search for, imagine the difference between the KCF tracker 

searching for two objects (templates) with the KCF tracker 

searching for 10 objects (templates). In addition, the search area 

is limited to area around the crossing line rather than the whole 

frame. Thus, the accuracy of tracking is improved. The 

pseudocode of the proposed object-counting algorithm is shown 

below 

 

 

III.DATASETS PREPARATION 

      To test the proposed algorithm for object counting, we have 

prepared a dataset that consist of 20 videos from different sources. 

We have chosen the videos so that we have a diversified set of 

environments and scenarios. The four main parameters chosen to 

reflect this diversity are, object density, image quality, angle of 

view, and speed of motion. 

A. Objects Density 

     Since object counting algorithms performance change with the 

number of objects in the frame, the density of objects is one of the 

key factors to validate the proposed algorithm. The dataset has 

several videos that have high objects density, medium (normal) 

objects density, and low objects density. The YOLO performance 

degrades slightly with the scenes that have large number of 

objects, as YOLO will miss some of the objects. Moreover, KCF 

tracker will have difficult times finding the tracked objects as the 

number of similar objects increases with high-density scenes.   

The low objects density videos have been chosen to compare the 

performance with high-density frames. 

B. Image Quality 

     The proposed object-counting algorithm depends on YOLO 

for object detection as well as KCF tracker for object tracking, 

therefore, the proposed algorithm performance will degrade with 

low-resolution images. To find out the reduction in performance 

compared to high-resolution images, the dataset has high 

resolution, medium resolution, and low-resolution videos. 

Moreover, the dataset almost has different videos from different 

times of the day starting from the early morning to midnight. 

C. Image View Angle and Road Shape 

     The third parameters is view angle that considers the angle 

between the camera and the tracked objects. This parameter is 

important because the ability to detect objects using YOLO varies 

with the angle that YOLO perceives the object. Moreover, since 

the primary objective of the proposed algorithm is to count cars, 

view angle that are not facing the road directly might miss some 

objects because of the blind spot that occur due to the tilt in the 

camera view as well be shown in the next section 

D. Speed of Motion 

     Finally, the speed of motion is considered too when preparing 

the dataset. As the speed of motion is indirectly affecting the 

object density. If objects are moving with fast speed, the 

probability for congestion is low. In addition, the number of 

frames for tracking the objects that crosses the crossing line is 

less, as the object will get far from the crossing line within few 

frames. On the other side, slow motion is a real test for the 

proposed algorithm as it test the tracking ability, which means that 

the ability of the KCF tracker to track objects for long time is 

challenged. However, this might not be the case as objects moving 

slowly might be easier to track, as there is no huge change in the 

background. The results are shown in the next section. 

 

 

Algorithm 1: Objects Counting Algorithm  

Input:  

          Image Frames Sequence (N size),  

          Crossing line position in the frame 

Output 

          Number of objects in all frames (Whole Video) 

 

Initialize  
          tracked_Objects_List to empty list 

          Total_Count => 0, Threshold => 10, Offset => 20, IoU_Min => 0.7 

 

For frame in the frames sequence do 

          Detected_Objects => Pass frame to YOLO Object Detection 

 

         If tracked_Objects_List is not empty 

                   Update tracked objects status using KCF tracker 

                   Remove any tracked object at distance >= Threshold + Offset 

         End If 

 

          For object in Detected_Objects do 

                   Distance => Calculate distance between object and crossing line 

                   If Distance < Threshold 

                             IoU => Intersection over Union with all tracked objects 

                             If no iou in IoU > IoU_Min 

                                        add object to tracked_Objects_List 

                                        Total_Count = Total_Count + 1 

                            End If 

                   End If 
 

          End For 

End For 

 

Return Total_Count 
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IV. PERFORMANCE EVALUATION  

This section shows the performance evaluation results and the 

effect of each of the predefined parameters on the accuracy of the 

algorithm. The reasons for the accuracy value after the tests are 

discussed, the full results are shown in the next page. 

A. Object  Density 

 Based on the test results summarized in the next page, the 

object density is not a key factor affecting the accuracy of the 

proposed algorithm. The main reason in our opinion is the good 

choice of the position of the crossing line in the initial setup. The 

proposed algorithm is detecting objects in the whole frame, but it 

tracks the counted objects for predefined region only. Therefore, 

whether the video frame has large number of objects or not, the 

algorithm is ignoring all objects except the objects in the search 

region. Well, the number of the objects in the search region is at 

most equal to number of lanes the road has as the algorithm is 

continuously updating the tracked objects list and removing old 

objects. In rare cases, YOLO might detect one object as two 

objects as shown in the left image Fig 6. However, this is an object 

detection problem, and cannot be linked to high object density 

environment.  

It is worth to point out to the fact that it is true that in high-density 

environments, the proposed algorithm will miss more objects 

compared to low density environments, but the percentage of 

error remains almost the same. In the dataset, video number 14 

and 20 reflect the low object density environments, the accuracy 

is higher compared to video number 3, 5, 7, and video number 16 

which reflect the high object density environments. However, the 

change in the accuracy is small and the overall accuracy is more 

than 90%, which is the target of the proposed algorithm. 

B. Image Quality 

The image quality or the frame resolution is the main cause of 

performance degradation and higher error rates. Since the 

proposed algorithm depends on YOLO object detection and KCF 

tracker at the same time. The low-resolution frames affect the 

YOLO and KCF tracker at the same time. Hence, the accuracy of 

the proposed algorithm will degrade. These low-resolution frames 

cause the YOLO to miss more objects, and based on the 

architecture we proposed, if YOLO is not detecting the object, the 

algorithm will never be able to start tracking it, nor counting it. 

Furthermore, if the YOLO can detect these objects in low-

resolution environments, the KCF tracker failure is much more 

compared to high or even medium resolution frames. 

Consequently, if YOLO is detecting and KCF tracker has more 

failure rates, the total count will be more than the ground truth as 

shown in the right image in Fig 6 since every frame YOLO is 

detecting an object with no tracking bounding box, the IoU is 0 

and this object will be counted again and again.  So, low image 

quality affect the accuracy by two means, either YOLO is not 

detecting in the first place, which results in total count value less 

than the ground truth, or by YOLO being able to detect, but the 

KCF tracker failing to track which results in total count value 

more than the ground truth. Video number 8 shows a low-

resolution video, the accuracy result is the worst in the whole 

dataset.  

 

 

C. Camera View Angle 

The view angle is for sure one of the most important factors that 

determine the accuracy of the proposed algorithm. Since a slightly 

tilted view as shown in the left image in Fig 7 might results in 

missing the detection of the object because of the blind spot. The 

blind spot occurs when a large object is moving in the center, and 

blocking some parts of the objects in the most right or most left 

side. Of Course, the large object will not block smaller objects 

from being scene in the camera, but the remaining parts that are 

visible to the camera are not enough for the YOLO object 

detection to detect the class of the object. Therefore, we conclude 

that the camera view affects the accuracy, but depending on the 

number of large objects that might cause the blind spot problem. 

The left image in Fig 7 shows a showcase of the blind spot 

problem. Video number 2 and video number 3 shows the same 

environment at different times of the day. The first video has more 

large objects than the second one, which explains the difference 

in accuracy value even though the environment has not changed.  

 

  

D. Speed and Direction of Motion 

Finally, the speed of motion. Based on the results from the 

performance evaluation, we can conclude that high-speed object 

motion in general has no effect on the accuracy of the proposed 

algorithm. Video number 5, and video number 16 reflect high-

speed environments, the accuracy is above 90% as expected, and 

have one of the best accuracy values. However, high object 

density with low speed environments resembled in video number 

13, and video number 19 have one of the worst accuracy results. 

The main reason for that is the increased rate of tracking failure 

in the KCF tracker, as objects are move slowly and existence of 

large number of similar objects in the frame. The KCF should 

track each counted object in the tracked objects list for longer time 

compare to high-speed environments. If tracking failed at one 

frame, YOLO detection of the object will result in the creation of 

a new tracked object, then, if the KCF tracker retain the old object 

again, we will have two tracking bounding boxes as shown the 

right image in Fig 7.  

 

Fig. 7  View angle of the camera  

Fig. 6  Object density (Left) and Image Quality (right) 
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Normal traffic with 

trucks and perfect 

image view  

Curved road with 

normal trafic and more 

trucks 

Curved road with high 

trafic density and no 

trucks 

Normal car density 

with buses and perfect 

image view 

High car density with 

high speed and curved 

road 

94.3 % 93.6 % 96.9 % 94.2 % 
96.6 % 

Aerial image view 

with traffic density 

High car density with 

perfect image view 

Curved road with low 

image rosultion 

Curved road with 

normal traffic and 

blind spot 

Normal traffic and 

perfect image view 

97.3 % 95.5 % 70 % 83.7 % 92.2 % 

Normal traffic with 

trucks and blind spot 

Normal traffic with 

outgoing cars and 

perfect image view 

High traffic density 

with low speed  

Low traffic density 

and perfect image 

view 

Normal traffic and 

perfect image view 

97.8 % 96 % 85.4 % 97.2 % 92.3 % 

High traffic density 

and speed with 

occlusion and perfect 

image view 

Normal traffic with 

trucks and blind spot 

Normal traffic at night High traffic with 

distraction and noise 

and low speed 

Extra Low traffic and 

perfect image view 

93.8 % 92.3 % 97% 85.7 % 98 .1% 
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CONCLUSION 

     This paper presented an innovative efficient object counting 

system. The system general architecture is explained.  Then, the 

challenges that we encountered using YOLO and KCF are 

addressed.  Finally, the system performance is evaluated using 

20 different videos with different characteristics. The 

performance evaluation showed promising results in terms of 

accuracy, and speed.  
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