
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	 978-1-7281-6535-6/20/$31.00 ©2020 IEEE

An Efficient Multi-Object Tracking and Counting Framework Using

Video Streaming in Urban Vehicular Environments
Ahmed Dirir, Mohammed Adib, Anas Mahmoud, Moatasem Al-Gunaid, Hesham El-Sayed

College of Information Technology,

UAE University,

Al Ain, Abu Dhabi, UAE

e-mail: {helsayed}@uaeu.ac.ae
Abstract

Object counting is an active research area that gained more

attention in the last few years. Since deep learning methods

outperformed all other object detection algorithms, the design of

efficient object counting algorithms became more realistic and

achievable. Numerous algorithms targeting various challenges

associated with object counting have been introduced. In a smart

transportation system, vehicle counting plays a crucial role as it

helps in creating autonomous systems, and better planning for

roads. In this paper, we present an efficient object counting

system and assess its performance using a dataset of 20 different

videos. The proposed system leverage an efficient object detector,

and object tracker to perform the counting. This paper combines

different approaches to count objects by tracking them, but

performs the tracking operation efficiently. Therefore, the

proposed systems achieve high accuracy values with low

processing time.

Keywords

 Counting; Object Detection & Tracking; YOLOv2; KCF.

I.INTRODUCTION

 Object detection algorithms based on deep learning

methods completely outperformed others. They can be divided

into two main categories, the one-stage approach, and the two-

stage approach [1] [2] [3]. The one-stage approach uses a fixed

number of predictions on a grid to define the bounding boxes

around the object, then it tries to classify each bounding box

and map it into one of the different classes defined by the neural

network. YOLO (You only look once) [4] [5] [6], and SSD

(Single Shot Detector) [7] [8] are one stage approach detection

algorithms that are highly prioritized.

 The two-stage approaches calculate the position and size of

the bounding boxes using a neural network before

classification. Therefore, the two-stage approach is more

accurate, but it involves more computational power because

two neural networks are implemented, one for forming the

bounding boxes, and one for classification. R-CNN (Region-

based Convolutional Neural Networks) is a two-stage approach

algorithm that is widely used. There are two other versions of

R-CNN, Faster R-CNN, and Mask R-CNN [9] [10].

 Object tracking algorithms are extremely useful in many

applications, they can be divided into four main categories [11],

matching based tracking; filtering based tracking, class-based

tracking, and fusion-based tracking. More recently, several

deep learning methods are combined with other algorithms to

improve tracking performance [12].

 Correlations filters correlate two samples to find the

similarity between them. KCF (Kernelised Correlation filter)

got more acceptance because it has shown higher accuracy and

speed compared to other correlation filters based trackers [13].

 Object Counting based on deep learning methods is an active

research area that attracted many scholars in recent years. Some

tried to establish an object counting quantitative comparison

between background subtraction, Viola-Jones, and Deep

Learning Methods on four different datasets [14]. Others

investigated YOLO potential in object counting. One group

build a traffic counting system based on YOLO. They have

utilized simple distance calculations to achieve the purpose of

vehicle counting, and they added checkpoints to alleviate the

consequence of false detection [15] [17].

 Similarly, another group used YOLO as a primary object

detector, and they have combined it with correlation filters to

build an object counting system [16]. Once an object is

detected, they start tracking it until it gets out of the frame or

disappears. However, this is a computationally expensive

algorithm since it tracks every object in the frame. Moreover, it

is more vulnerable to tracking failures as objects that disappear

and reappear might be counted twice.

 Finally, to avoid counting the same object twice, and to

reduce the computational complexity, [18] suggested detecting

objects every N frames, then using Kanade–Lucas–Tomasi

feature tracker (KLT) to track counted objects.

 In this paper, we propose an efficient object counting system

that integrate deep learning (YOLO) for object detection, and

Kernelised Correlation Filter (KCF) for object tracking. The

proposed system utilizes a simple distance calculation, and

KCF tracker to count objects once. The tracking is implemented

in a narrow region instead of the whole frame to reduce errors

and time complexity. The proposed object counting algorithm

is fast so that there is no need to detect objects every N frames.

It works frame by frame as will be explained later in the paper.

The rest of this paper is organized as follows. Section II

describes the proposed system architecture. Section III presents

the datasets preparations, and Section IV shoes the performance

evaluation of the proposed system. Finally, Section V

concludes the paper. The system has been tested against a

dataset of 20 different videos. These videos varied in the view

angle, speed of motion for the objects, density of objects and

the image quality.

ICCSPA20 1570627532

1

II. SYSTEM ARCHETICTURE

 The High-level Architecture of the system is shown in Fig 1.

The system starts with the video segmentation stage where the

upcoming video stream is segmented into N frames. The system

feeds these frames sequentially to the object detection algorithm

(YOLO). YOLO output a list of detected objects in each frame.

Then, these detected objects are the input for the object counting

algorithm where the actual counting is implemented. The object

counting stage updates the total objects count if the input to the

object counting stage satisfies the conditions as will be explained

in the next sections. This process will be repeated for N frames.

A. Initial Setup

 The initial setup required is the positioning of the crossing line

in the best location such that the maximum accuracy is achieved.

The crossing line is the line in which objects are counted once

they crossed it. Since YOLO is the primary and only object

detection in the system, the position of the line will affect the

system accuracy as YOLO performance changes with objects

sizes, shapes, and orientation. Fig 2 shows two different positions

of the crossing line. The red line is clearly in a better position as

the number of objects detected by YOLO is more than the number

detected in the yellow line region. The second disadvantage of the

yellow line is the blind spot region where the cars in the most left

lane might be missed if large objects (Trucks) are passing in the

adjacent lane (Center lane). In our system, we choose the position

of the crossing line manually by inspection. It is worth to note that

throughout all experiments we conducted, we can conclude that

the best position for the crossing line should be within the center

of the frame, as YOLO tends to be more accurate.

8

B. Object Detection Stage

 YOLO defines a collection of bounding boxes with different

aspect ratios. The aspect ratios are calculated by applying the k-

means clustering algorithm on all bounding boxes in the training

dataset [7]. The bounding boxes are fed to the neural network to

classify each bounding box and map it to one of the predefined

classes. The detection network has 24 convolutional layers and

two fully connected layers at the end. In this stage, each frame is

possessed with YOLO to find out the bounding boxes for all

objects in the current frame. These objects alongside with the

output from the tracking stage to is used to find the target object.

YOLO processes each frame independently from previous

frames; thus, it can recover from object loss in one frame. These

features make YOLO excellent candidate for object detection,

unfortunately, not for object tracking. Another advantage of

YOLO is the ability to detect scale change, where some of

tracking algorithms suffer the most.

Fig.1 Proposed Object Tracking System Archeticture

Fig.1 Proposed Object Counting System Archeticture

Fig.2 Different positions of the crossing line

2

C. Object Counting stage

 The object counting stage work flow is shown in Fig 3. For all

detected objects after being filtered in the object detection stage,

the distance between each object and the crossing line is

calculated. If the distance between an object and the crossing line

is less than a threshold τ, and if the object is not in the tracked

objects list, the system starts tracking this object using KCF

tracker, increment the total objects count by one, and add this

object to the tracked objects list. The system continuously updates

the state of each tracked object in the tracked objects list using the

KCF tracker. Once an object is added to the tracked objects list as

shown in the green box in Fig 4, the system will keep tracking it

until it gets far from the crossing line by an offset α. Finally, the

system will discard any tracked object, which gets far from the

crossing line by more than the predefined offset α. We have

chosen the threshold τ and the offset α experimentally; therefore,

they might vary slightly from one street environment to another.

In our system, the threshold is 10 and the offset is 20-pixel values.

To make sure that any counted object is counted once, the system

will track objects that have been counted until they get

far the crossing line by the offset α. The intersection over union

(IoU) defined by equation [1] between the YOLO bounding box

and the KCF tracker bound box is used to find if the system

counted an object or not. If the IoU between two objects is greater

than a margin µ (0.8 in our system), then the system will ignore

this object, and it will not count it. The main motivation for this

architecture is the fact that an object might stand within a distance

less than the threshold for more than one frame due to congestion

or other reasons, which will result in counting this object multiple

times. We have to make sure that any counted object is defined to

the system in a way that the system will be aware that this object

is counted. The only possible way is to track every counted object

until it become far from the crossing line by the offset α safe

enough to conclude that this object has gone. Fig 5 shows an

object that the system is tracking. The green box is for the KCF,

and the blue box is for YOLO. In this case, the IoU is more than

0.9.

𝑰𝒐𝑼 =
𝐚𝐫𝐞𝐚 𝐨𝐟 𝐨𝐯𝐞𝐫𝐥𝐚𝐩

𝑨𝒓𝒆𝒂 𝒐𝒇 𝒖𝒏𝒊𝒐𝒏
 (𝟏)

Fig.4 Object being added to the tracked objects list

Fig. 5 Intersection over Union

Fig.3 Object Counting algorithmand flow diagram

3

The proposed framework has the advantage over other counting

by tracking algorithms because the tracking is done for short

period of time. Instead of tracking the object from the point it

enters the frame to the point it leaves the frame, our system is

tracking the object only from the moment it crosses the crossing

line to the moment the object get far from the crossing line by the

predefined offset. The proposed algorithm is more robust to

tracking failure compare to other algorithms that track the object

through the whole frame since the probability of tracking failure

is less when the tracking region is small. Most of the cases, the

system tracks any given object for 10 frames at most with

approximately no change in the background. Recall that we have

mentioned that the position of the crossing line affects the

accuracy; therefore, it is better to choose the position of the

crossing line such that there is no change in the background.

Furthermore, the proposed system has less computational

complexity as it tracks few objects at the same time; the system is

continuously removing old objects from the tracked objects list.

Finally, as the system is continuously removing objects from the

tracked objects list, the KCF tracker will have less templates to

search for, imagine the difference between the KCF tracker

searching for two objects (templates) with the KCF tracker

searching for 10 objects (templates). In addition, the search area

is limited to area around the crossing line rather than the whole

frame. Thus, the accuracy of tracking is improved. The

pseudocode of the proposed object-counting algorithm is shown

below

III.DATASETS PREPARATION

 To test the proposed algorithm for object counting, we have

prepared a dataset that consist of 20 videos from different sources.

We have chosen the videos so that we have a diversified set of

environments and scenarios. The four main parameters chosen to

reflect this diversity are, object density, image quality, angle of

view, and speed of motion.

A. Objects Density

 Since object counting algorithms performance change with the

number of objects in the frame, the density of objects is one of the

key factors to validate the proposed algorithm. The dataset has

several videos that have high objects density, medium (normal)

objects density, and low objects density. The YOLO performance

degrades slightly with the scenes that have large number of

objects, as YOLO will miss some of the objects. Moreover, KCF

tracker will have difficult times finding the tracked objects as the

number of similar objects increases with high-density scenes.

The low objects density videos have been chosen to compare the

performance with high-density frames.

B. Image Quality

 The proposed object-counting algorithm depends on YOLO

for object detection as well as KCF tracker for object tracking,

therefore, the proposed algorithm performance will degrade with

low-resolution images. To find out the reduction in performance

compared to high-resolution images, the dataset has high

resolution, medium resolution, and low-resolution videos.

Moreover, the dataset almost has different videos from different

times of the day starting from the early morning to midnight.

C. Image View Angle and Road Shape

 The third parameters is view angle that considers the angle

between the camera and the tracked objects. This parameter is

important because the ability to detect objects using YOLO varies

with the angle that YOLO perceives the object. Moreover, since

the primary objective of the proposed algorithm is to count cars,

view angle that are not facing the road directly might miss some

objects because of the blind spot that occur due to the tilt in the

camera view as well be shown in the next section

D. Speed of Motion

 Finally, the speed of motion is considered too when preparing

the dataset. As the speed of motion is indirectly affecting the

object density. If objects are moving with fast speed, the

probability for congestion is low. In addition, the number of

frames for tracking the objects that crosses the crossing line is

less, as the object will get far from the crossing line within few

frames. On the other side, slow motion is a real test for the

proposed algorithm as it test the tracking ability, which means that

the ability of the KCF tracker to track objects for long time is

challenged. However, this might not be the case as objects moving

slowly might be easier to track, as there is no huge change in the

background. The results are shown in the next section.

Algorithm 1: Objects Counting Algorithm

Input:

 Image Frames Sequence (N size),

 Crossing line position in the frame

Output

 Number of objects in all frames (Whole Video)

Initialize
 tracked_Objects_List to empty list

 Total_Count => 0, Threshold => 10, Offset => 20, IoU_Min => 0.7

For frame in the frames sequence do

 Detected_Objects => Pass frame to YOLO Object Detection

 If tracked_Objects_List is not empty

 Update tracked objects status using KCF tracker

 Remove any tracked object at distance >= Threshold + Offset

 End If

 For object in Detected_Objects do

 Distance => Calculate distance between object and crossing line

 If Distance < Threshold

 IoU => Intersection over Union with all tracked objects

 If no iou in IoU > IoU_Min

 add object to tracked_Objects_List

 Total_Count = Total_Count + 1

 End If

 End If

 End For

End For

Return Total_Count

4

IV. PERFORMANCE EVALUATION

This section shows the performance evaluation results and the

effect of each of the predefined parameters on the accuracy of the

algorithm. The reasons for the accuracy value after the tests are

discussed, the full results are shown in the next page.

A. Object Density

 Based on the test results summarized in the next page, the

object density is not a key factor affecting the accuracy of the

proposed algorithm. The main reason in our opinion is the good

choice of the position of the crossing line in the initial setup. The

proposed algorithm is detecting objects in the whole frame, but it

tracks the counted objects for predefined region only. Therefore,

whether the video frame has large number of objects or not, the

algorithm is ignoring all objects except the objects in the search

region. Well, the number of the objects in the search region is at

most equal to number of lanes the road has as the algorithm is

continuously updating the tracked objects list and removing old

objects. In rare cases, YOLO might detect one object as two

objects as shown in the left image Fig 6. However, this is an object

detection problem, and cannot be linked to high object density

environment.

It is worth to point out to the fact that it is true that in high-density

environments, the proposed algorithm will miss more objects

compared to low density environments, but the percentage of

error remains almost the same. In the dataset, video number 14

and 20 reflect the low object density environments, the accuracy

is higher compared to video number 3, 5, 7, and video number 16

which reflect the high object density environments. However, the

change in the accuracy is small and the overall accuracy is more

than 90%, which is the target of the proposed algorithm.

B. Image Quality

The image quality or the frame resolution is the main cause of

performance degradation and higher error rates. Since the

proposed algorithm depends on YOLO object detection and KCF

tracker at the same time. The low-resolution frames affect the

YOLO and KCF tracker at the same time. Hence, the accuracy of

the proposed algorithm will degrade. These low-resolution frames

cause the YOLO to miss more objects, and based on the

architecture we proposed, if YOLO is not detecting the object, the

algorithm will never be able to start tracking it, nor counting it.

Furthermore, if the YOLO can detect these objects in low-

resolution environments, the KCF tracker failure is much more

compared to high or even medium resolution frames.

Consequently, if YOLO is detecting and KCF tracker has more

failure rates, the total count will be more than the ground truth as

shown in the right image in Fig 6 since every frame YOLO is

detecting an object with no tracking bounding box, the IoU is 0

and this object will be counted again and again. So, low image

quality affect the accuracy by two means, either YOLO is not

detecting in the first place, which results in total count value less

than the ground truth, or by YOLO being able to detect, but the

KCF tracker failing to track which results in total count value

more than the ground truth. Video number 8 shows a low-

resolution video, the accuracy result is the worst in the whole

dataset.

C. Camera View Angle

The view angle is for sure one of the most important factors that

determine the accuracy of the proposed algorithm. Since a slightly

tilted view as shown in the left image in Fig 7 might results in

missing the detection of the object because of the blind spot. The

blind spot occurs when a large object is moving in the center, and

blocking some parts of the objects in the most right or most left

side. Of Course, the large object will not block smaller objects

from being scene in the camera, but the remaining parts that are

visible to the camera are not enough for the YOLO object

detection to detect the class of the object. Therefore, we conclude

that the camera view affects the accuracy, but depending on the

number of large objects that might cause the blind spot problem.

The left image in Fig 7 shows a showcase of the blind spot

problem. Video number 2 and video number 3 shows the same

environment at different times of the day. The first video has more

large objects than the second one, which explains the difference

in accuracy value even though the environment has not changed.

D. Speed and Direction of Motion

Finally, the speed of motion. Based on the results from the

performance evaluation, we can conclude that high-speed object

motion in general has no effect on the accuracy of the proposed

algorithm. Video number 5, and video number 16 reflect high-

speed environments, the accuracy is above 90% as expected, and

have one of the best accuracy values. However, high object

density with low speed environments resembled in video number

13, and video number 19 have one of the worst accuracy results.

The main reason for that is the increased rate of tracking failure

in the KCF tracker, as objects are move slowly and existence of

large number of similar objects in the frame. The KCF should

track each counted object in the tracked objects list for longer time

compare to high-speed environments. If tracking failed at one

frame, YOLO detection of the object will result in the creation of

a new tracked object, then, if the KCF tracker retain the old object

again, we will have two tracking bounding boxes as shown the

right image in Fig 7.

Fig. 7 View angle of the camera

Fig. 6 Object density (Left) and Image Quality (right)

5

Normal traffic with

trucks and perfect

image view

Curved road with

normal trafic and more

trucks

Curved road with high

trafic density and no

trucks

Normal car density

with buses and perfect

image view

High car density with

high speed and curved

road

94.3 % 93.6 % 96.9 % 94.2 %
96.6 %

Aerial image view

with traffic density

High car density with

perfect image view

Curved road with low

image rosultion

Curved road with

normal traffic and

blind spot

Normal traffic and

perfect image view

97.3 % 95.5 % 70 % 83.7 % 92.2 %

Normal traffic with

trucks and blind spot

Normal traffic with

outgoing cars and

perfect image view

High traffic density

with low speed

Low traffic density

and perfect image

view

Normal traffic and

perfect image view

97.8 % 96 % 85.4 % 97.2 % 92.3 %

High traffic density

and speed with

occlusion and perfect

image view

Normal traffic with

trucks and blind spot

Normal traffic at night High traffic with

distraction and noise

and low speed

Extra Low traffic and

perfect image view

93.8 % 92.3 % 97% 85.7 % 98 .1%

6

CONCLUSION

 This paper presented an innovative efficient object counting

system. The system general architecture is explained. Then, the

challenges that we encountered using YOLO and KCF are

addressed. Finally, the system performance is evaluated using

20 different videos with different characteristics. The

performance evaluation showed promising results in terms of

accuracy, and speed.

ACKNOWLEDGMENT

 This research was supported by the Research Office at the

United Arab Emirates University (grant number G00003133)

and the Roadway, Transportation, and Traffic Safety Research

Center (RTTSRC) of the United Arab Emirates University

(grant number 31R116).

REFERANCES

[1] K., Z. and R., M. (2018). A Review: Object Detection using

Deep Learning. International Journal of Computer Applications,

180(29), pp.46-48.

[2] Anusha, C. and S., P. (2018). Object Detection using Deep

Learning. International Journal of Computer Applications,

182(32), pp.18-22.

[3] Pathak, A., Pandey, M. and Rautaray, S. (2018). Application

of Deep Learning for Object Detection. Procedia Computer

Science, 132, pp.1706-1717.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You Only Look Once: Unified, Real-Time Object Detection,”

in Proceedings of CVPR,2016, pp. 779–788.

[5] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In Computer Vision and Pattern Recognition (CVPR), 2017

IEEE Conference on, pages 6517–6525. IEEE, 2017. 1, 2, 3

[6] J. Redmon and A. Farhadi. Yolov3: An incremental

improvement. arXiv, 2018. 4

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37.Springer,

2016. 3

[8] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg.Dssd:

Deconvolutional single shots detector. arXiv

preprintarXiv:1701.06659, 2017. 3

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks,” in Proceedings of NIPS, 2015, pp. 91–99.

[10] K. He, G. Gkioxari, P. Doll ́ar, and R. Girshick, “Mask

R-CNN,” in Proceedings of ICCV, 2017, pp. 2961–2969.

[11] Jaya Sunkara, M Santhosh, Suresh Cherukuri, and L. Gopi

Krishna, “Object Tracking Techniques and Performance

Measures – A Conceptual Survey” IEEE International

Conference on Power, Control, Signals and Instrumentation

Engineering (ICPCSI-2017)

[12] D. Zhang, H. Maei, X. Wang, Y. Wang, "Deep

reinforcement learning for visual object tracking in

videos", Comput. Res. Repository, 2017.

[13] M. George, B. Jose and J. Mathew, "Performance Evaluation

of KCF based Trackers using VOT Dataset", Procedia Computer

Science, vol. 125, pp. 560-567, 2018. Available:

10.1016/j.procs.2017.12.072.

[14] Benny Hardjono , Hendra Tjahyadi, "Vehicle Counting

Quantitative Comparison Using Background Subtraction, Viola

Jones and Deep Learning Methods", 2018 IEEE 9th Annual

Information Technology, Electronics and Mobile

Communication Conference (IEMCON).

[15] Jia-Ping Lin, Min-Te Sun, "A YOLO-Based Traffic

Counting System", 2018 Conference on Technologies and

Applications of Artificial Intelligence (TAAI).

[16] C S Asha ; A V Narasimhadhan, "Vehicle Counting for

Traffic Management System using YOLO and Correlation

Filter", 2018 IEEE International Conference on Electronics,

Computing and Communication Technologies (CONECCT).

[17] Alejandro Forero ; Francisco Calderon, "Vehicle and

pedestrian video-tracking with classification based on deep

convolutional neural networks", 2019 XXII Symposium on

Image, Signal Processing and Artificial Vision (STSIVA).

[18] Mohamed A. Abdelwahab, "Accurate Vehicle Counting

Approach Based on Deep Neural Networks", 2019 International

Conference on Innovative Trends in Computer Engineering

(ITCE).

7

