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Abstract— Current seismic survey systems use wired 

telemetry to collect seismic data from sensors (geophones), and 
due to the massive cabling requirement, the current wired 
systems are limited by weight and cost. Replacing current 
systems with wireless technologies is becoming a more practical 
and economical choice. Once sensors are wireless, localizing 
them becomes a necessity when interpreting seismic data. 
Direction of Arrival (DOA) estimation can be used for source 
localization. In this paper, DOA estimation based on Deep 
Neural Network (DNN) is proposed for wireless seismic survey. 
In terms of accuracy in estimation, simulation results are 
promising. 

Keywords—Deep Neural Network; Direction of Arrival; 
Geophone; Wireless Seismic Surveys.  

I. INTRODUCTION 

Currently, oil and gas are the main sources of energy. Due 
to their importance, substantial research is directed to improve 
methods for exploring reservoirs of these natural resources. 
One of the common exploration methods is the seismic 
survey. Seismic data acquisition or seismic surveying is a 
process in which the underground structure is investigated [1]. 
The process uses a source to create vibrations on the ground 
which generate acoustic signals that propagate through the 
crust of the earth and experience different reflections from 
different layers of the crust. The reflected signals travel back 
to the ground and are detected by sensors. These sensors could 
be either geophones or accelerometers. A geophone is a 
ground-motion transducer that converts the ground 
movements into voltage. Current seismic survey systems 
mostly use wired geophones, which for large scale surveys can 
result in a huge amount of cables that can be up to hundreds 
of kilometers. This massive cabling requirement introduces 
constraints and inflexibility on the survey geometry design 
[2]. In addition, cables can form up to 50% of the total survey 
cost and up to 75% of total survey equipment weight [3]. 
Consequently, this leads to inefficiencies and high 
transportation costs, which can be avoided if wireless 
technologies are incorporated in seismic surveys.  Wireless 
systems often use knowledge about the Direction of Arrival 
(DOA) of the signal. Generally, DOA can be used to locate a 
source or to enable the antenna to form a beam in the direction 
of the signal to enhance the transmission and reception 
efficiency.  

Wireless seismic surveys are yet to be fully incorporated 
in the field. However, in the literature, there are some 
proposed wireless communication models. In general, the 
models represent a large network of geophones managed by 
nodes that transmit the geophones readings to a central office. 
In [4], Tian adopted a wireless sensor system following a star 
topology, where multiple geophones are connected to a single 
gateway node. The geophones send the seismic data 
continuously, and the gateways capture the data every fixed 
time-period and send it to the central office. In [5], Savazzi et 
al. proposed a system that handles a large number of 
geophones in the range of 20,000 − 30,000 that are 
simultaneously active with a typical land distribution density 
of 2000 geophone/sqkm. The authors divided the geometric 
model into sub-networks, where each sub-network contains a 
single gateway node coordinating 300 geophones. The 
authors in [3] and [6] modified the network by clustering 
geophones to transmit seismic data to a cluster-head node, 
which is an intermediate node that passes the data from several 
geophones to the gateway. In [7], an orthogonal geometry for 
a typical geophone network is described, where the Receiver 
Lines (RLs) and the Source Lines (SLs) are perpendicular to 
each other. Geophones are distributed along the RLs with 
separation of 5 − 30 𝑚, and vibration sources take shots 
along the SLs. A total of 30 RLs are assumed to cover an area 
of  72 𝑘𝑚 , and each RL consists of 480 geophones summing 
up to a total of 14400 geophones.  

Regarding the used communication technologies, Savazzi 
et al. compared different communication technologies for 
short-range communication, which is done inside the sub-
network, such as ZigBee, Bluetooth, Impulse Radio Ultra-
Wide Band (IR-UWB), Multi Band-Orthogonal Frequency 
Division Multiplexing (MB-OFDM), and Wi-Fi [2]. Also, 
candidates for long range communication technology to be 
used between sub-networks and the central office were 
compared; these includes cellular systems (EDGE and 
UMTS), Wi-Fi, and WiMAX. In [3] and [6], Savazzi et al. 
proposed using IR-UWB for short-range communications due 
to its support for high data rates. In addition, it is noted that 
Wi-Fi is a good candidate for long-range communications but 
lacks energy efficiency. In [7], power saving geophone 
network protocols are described that are compliant with 
IEEE 802.11𝑎𝑓  or SuperWiFi which operates in Television 
White Space (TVWS) frequency bands that range from 50 −
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700 𝑀𝐻𝑧. This is considered to be a large bandwidth that 
supports huge data rates that are usually required in seismic 
surveys, with the assumption that seismic surveys are 
conducted on areas where these frequencies are not utilized. 

Many algorithms for DOA estimation have been proposed, 
such as, Beamforming, Capon, Multiple Signal Classification 
(MUSIC), Estimation of Signal Parameters via Rotation 
Invariance Technique (ESPRIT) [8] and recently Deep 
Learning. Deep learning or Deep Neural Network (DNN) is a 
multilayer interconnected neural network that received a lot of 
attention as a result of wide application and high resolution in 
executing tasks. Some of the applications of DNN includes 
medicine, radar, sonar, and mobile communications. There 
have been new attempts to incorporate deep learning in DOA 
estimation. In [9], the authors used a DNN for finding the 
DOA of an Unmanned Aerial Vehicle (UAV). Kase et al in 
[10] designed a DNN for a specific two-target DOA 
estimation scenario and got relatively high accuracy (1° 
resolution). Zhang et al in [11] used DNN for DOA in 1°  
resolution. Moreover, Lui-li et al in [12] used deep 
convolution for DOA estimation in approximating real-time 
response. On the other hand, Huang et al in [13] used deep 
learning for super-resolution DOA estimation based on a 
massive Multiple-Input Multiple-Output (MIMO) system, 
which is a close match to the application in hand since the 
seismic survey system may be modeled as a massive MIMO 
system for large scale seismic surveys.  

In this paper, different DNNs with various network 
structures are evaluated for DOA estimation. One network 
structure is chosen based on its performance on multiple 
criteria. The chosen network is applied in a simulated seismic 
survey to estimate the DOA of wireless geophone at cluster-
head node. The remainder of this paper is organized as 
follows. In Section II, the system model is presented including 
the seismic geometric model, the MIMO model and the deep 
learning model. Simulation and results are provided in Section 
III, which is followed by a conclusion in Section IV. 

Notations: In this paper vectors are represented by 
boldface small letters, whereas matrices are denoted by 
boldface capital letters. Transpose and Hermitian operators 
are represented by [ ∙ ] and [ ∙ ] , respectively. The symbols 
ℜ( ∙ ) and ℑ( ∙ ) represent the real and imaginary parts of their 
inputs, respectively. 

II. SYSTEM MODEL 

A. Nodes Distribution Model 

In this paper, we adopted a three-level geometry in which 
the system consists of geophones, cluster-head nodes and 
gateways. The process of wireless seismic survey starts by 
deploying the equipment in a specific manner. The geometry 
of deployment is described in this section. Once the 
equipment is deployed, a source of vibration is set on the 
ground near to the geophones. These vibrations result in 
acoustic signals propagating through the layers of the crust. 
The reflected signals penetrate back towards the surface of 
the earth and are then sensed by geophones. Geophones then 
digitize and amplify the reflected waves and send these 
digitized signals to a nearby cluster-head that transmits the 
data into the nearest gateway node, which, in turn, forwards 
it to the central office for further processing. 

A total number of 99 gateways were assumed in an area 
of 1 𝑘𝑚 × 10 𝑘𝑚 = 10 𝑘𝑚  and are uniformly distributed in 

lines with a separation of 300 𝑚 in both the horizontal and 
vertical dimensions. Each gateway manages 18 cluster-head 
nodes. Cluster-head nodes are assumed to have a uniform 
distribution in lines with a separation of 100 𝑚 and 50 𝑚 in 
the horizontal and vertical dimensions, respectively. Each 
cluster-head node is designed to communicate with 12 to 15 
geophones. The geophones are assumed to be randomly 
distributed in the same lines as cluster-head nodes and have a 
uniformly distributed random separation in the range of 5 −
 30 𝑚 in both dimensions. A small section of the geometric 
model is shown in Fig. 1. Wireless connection can be 
provided throughout the entire area by dividing the area into 
hexagonal cells, where each cell is controlled by a cluster-
head node. 

In order to estimate DOA of received signal, we assume 
that we have a 120° coverage for each antenna, thus, 
sectoring the cells is mandatory. Therefore, each cell is 
divided into three sectors. Zooming into one cell, Fig. 2, 
shows the three sectors with different set of geophones inside 
each sector. 

Each sector will have its own ULA, tripling the total 
number of served geophones in each cell. Now, each cluster-
head contains three ULAs and communicates with around 45 
geophones.  

 
Fig. 1. Geometric model for wireless seismic surveys 

 

 
Fig. 2. One cell sensor geometry 
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B. DOA Estimation Model 

As mentioned in previous section II-A, we assume ULA with 
𝑑 = 𝜆/2 as the spacing between antenna elements, and 𝜆 is 
the wavelength of the transmitted signal, as shown in Fig. 3. It 
is also assumed that the signal is transmitted far enough from 
the receiver so that the far-field model is suitably adopted. 

We consider a wireless seismic model as a typical MIMO 
Up-Link system of a Base Station (BS) with 𝑁 -element ULA 
and 𝐾 single antenna users. For  transmitted signal vector, 𝐱, 
and a channel response, 𝐇, we can model the received signal, 
𝐲, by: 

 𝐲(𝑡) = 𝐇𝐱(𝑡) + 𝐧(𝑡) (1) 

where 𝐧 ~ 𝒞𝒩(0, 𝜎 𝐈 ) is Additive White Gaussian Noise 
(AWGN), and 𝐇 = [𝐡 , 𝐡 , … , 𝐡 ], where 𝐡  is a channel 
response given as: 

 
𝐡 = 𝑔 , 𝐚 (𝜃 , ) = 𝐀 , 𝐠  (2) 

where 𝑃 represents the number of resolvable paths from the 
BS to the 𝑘  user, 𝐠  denotes the complex gain of the 
channel, and 𝜃 ,  represents the physical DOA of the 𝑖  
path at the 𝑘  user. Also, the steering vector 𝐚 (𝜃 , ) is 
defined as the array response of the 𝑖  path at the BS. For 
a ULA, 𝐚 (𝜃 , ) can be expressed as [13]: 
 

𝐚 𝜃 ,

=
1

𝑁
1 , 𝑒 ,  

, … , 𝑒
( ) ,   

  (3) 
The steering matrix can be assembled as 𝐀 , =

𝐚 𝜃 , , 𝐚 𝜃 , , … , 𝐚 𝜃 , . 
Assuming, for simplicity, that the channel can be modeled 

by the steering vector only without the complex gain, and 
there is no multipath, the received signal can be written as: 

 𝐲(𝑡) = 𝐀𝐱(𝑡) + 𝐧(𝑡) (4) 

where 𝐀 = [𝐚(𝜃 ), 𝐚(𝜃 ), … , 𝐚(𝜃 )] is the steering matrix. 

Most DOA estimation algorithms require finding the 
covariance matrix of the received signal, 𝐑𝐲𝐲 , which is given 
by: 

 𝐑𝐲𝐲 =  𝐸[𝐲(𝑡)𝐲 (𝑡)] = 𝐀𝐑𝐱𝐱𝐀 + 𝜎 𝐈  (5) 

where 𝐑𝐱𝐱 = E[𝐱(𝑡)𝐱 (𝑡)]  is the covariance matrix of the 
transmitted signal and 𝜎  is the variance of the noise. In fact, 
it is not easy to find the exact covariance matrix, thus 𝐑𝐲𝐲 can 
be estimated over 𝑇 samples as follows: 

 𝐑𝐲𝐲 ≈ 𝐑𝐲𝐲 =
1

𝑇
𝐲(𝑡 )𝐲 (𝑡 ) =

1

𝑇
𝐘𝐘  (6) 

where 𝐘 = [𝐲(𝑡 ), 𝐲(𝑡 ), … , 𝐲(𝑡 )] . 

C. Deep Neural Network Formulation 

Recently, the term “deep learning” has been intensively 
used in many aspects including the DOA estimation, as 
presented in Section I. The simplest linear one-layer neural 
network with 𝑀 inputs can be expressed as: 

 𝑧 = 𝑓(𝐯, 𝐰) = 𝑣 𝑤 , + 𝑏   (7) 

where 𝑓(⋅), 𝑧 , 𝐯, 𝐰 and 𝑏  are the output of the layer, input to 
the layer, weights of the neural network layer and the bias, 
respectively. Fig. 4 illustrates the layout of the adopted DNN. 
The adopted deep learning algorithm solves the problem of 
DOA estimation through a mapping function to generate a 
weight that has minimum error between any input and the 
desired output. To estimate DOA, the covariance matrix 𝐑𝐲𝐲 
is used as the input to the DNN, denoted by 𝒗 =
[𝑣 , 𝑣 , … , 𝑣 ]. Since 𝐑𝐲𝐲 is a Hermitian matrix, it is enough 
to consider its upper or lower triangular entries. In this model, 
the lower triangular entries of 𝐑𝐲𝐲 is decomposed to the 
single vector 𝒗 by taking the diagonal elements first and then 
all elements below it as one row at a time, and separating the 
real component from the imaginary one so that the input 
vector of the DNN is: 

 
𝒗 = 𝑟 , , 𝑟 , , … , 𝑟 , , ℜ 𝑟 , , ℑ 𝑟 , ,

ℜ 𝑟 , , ℑ 𝑟 , , ℜ 𝑟 , , … , ℑ 𝑟 ,  
(8) 

The output of the input layer is then fed to a multiple 
hidden layers for feature extraction. Finally, a linear output 
layer is required to produce the estimated output. The output 
angles is in the range −60° to 60° with 1  resolution. In this 
paper, feed-forward neural network with supervised learning 
technique is used, where the learning algorithm used is 
Levenberg Marquardt [14]. Moreover, three network 
parameters are varied to find the optimum performance, 
which are based on training data in terms of the Signal-to-
Noise Ratio (SNR) variation, number of hidden layers and 
number of neurons in each layer. The following section 
analyzes the performance of the proposed DNN. 

𝜃  

𝑘th source 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≫
2𝐷

𝜆
 

𝑥 (𝑡) 

𝑑 𝑑 

1 2 3 𝑁  

𝑑𝑠𝑖𝑛𝜃

Uniform Linear Array 

Fig. 3. DOA estimation using ULA 
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Fig. 4. Structural layout of DNN  

III. SIMULATION AND RESULTS 

In this section, the performance of the presented 
algorithm is evaluated using different number of layers and 
number of neurons in each layer. In Section III-B, the best 
parameters for the DNN are used in the developed seismic 
model.  We assume single active source at a time, 𝐾 = 1 with 
randomly generated narrow band signal with carrier 
frequency of 2.4 𝐺𝐻𝑧 at different levels of SNR. The 
transmitted signal arrive at the ULA of 5-element ULA with 
DOA  in the range from −60° to 60° with 1  resolution which 
results in 121 possible angles. A total of 300 snapshots (𝑇) 
is adopted for evaluating the covariance matrix. The number 
of inputs to DNN is 𝑁  which is 25 for the selected ULA. In 
the adopted neural network, sigmoid activation function is 
used in each hidden layer and linear output activation 
function. The learning algorithm used is Levenberg 
Marquardt backpropagation and Gradient descent with 
momentum as adaption function. To avoid overfitting in the 
network while training, 80 percent of the generated data is 
used for training the network while the remaining 20 percent 
is used for validation. 

Two performance metrics namely the Root Mean Square 
Error (RMSE) and the probability of obtaining true DOAs are 
presented. The RMSE is defined as follows: 

 RMSE =
1

𝐾𝑁
𝜃

( )
− 𝜃

( )  (9) 

where 𝑁 and 𝐾 are the number of tests, 𝑁 is the number of 

tests per user, 𝐾 is the number of users. 𝜃( ), and 𝜃( ) are the 
estimated DOA and actual DOA at the 𝑛  test for the 𝑘  
user. For both metrics, the estimated DOAs are said to be 
correct whenever their deviation from the actual DOA is 
within 0.5°. 

In order to study the effect of certain types of training data 
on the performance of the network, we fixed the other two 
parameters, 2 layers each contains 10 neurons, and we 
trained the network with four different data sets. These 
training data sets are generated with varying SNR as follows:  
 

 Constant 0 𝑑𝐵 SNR 

 Constant 30 𝑑𝐵 SNR 
 Increasing SNR from 0 𝑑𝐵 to 30 𝑑𝐵 with steps of 1 𝑑𝐵  
 Increasing SNR from 0 𝑑𝐵 to 30 𝑑𝐵 with steps of 5 𝑑𝐵  

There is a total of 6050 data samples per SNR, resulting 
in a total number of 6050, 6050, 187550 and 42350 data 
samples for the four mentioned cases, respectively. The four 
trained neural networks are tested with another data set that 
contains all 121 angles in all values of integer SNRs from 
0 𝑑𝐵 to 30 𝑑𝐵. Fig. 5 and Fig. 6 compare the effect of these 
four training cases on the RMSE and the probability of 
obtaining correct DOA’s, respectively. It is evident from Fig. 
5 and Fig. 6 that networks trained with hybrid data (with 
multiple SNRs) perform much better than those of a single 
and fixed SNR. Moreover, the network trained with data that 
contains all 31 different SNRs (1 𝑑𝐵 steps) performs slightly 
better than that of 7 different SNRs (5 𝑑𝐵 steps). Training set 
of hybrid data with 1 𝑑𝐵 step is used in the remaining results. 

To study the effect of varying the number of neurons in 
each layer in the network, we fixed the type of training set 
and the number of layers to be 2. The networks are trained 
with the same training data set using 10, 30 and 50 neurons 
and also tested with another unknown data set. Fig. 7 and Fig. 
8 present the performance evaluation measures.  

 
Fig. 5. RMSE for different training conditions 

 
Fig. 6. Probability of correct DOA estimation for different trainings 
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The RMSE values show comparable performance for all 
three cases with a slight lead for the case of 30 neurons. 
Nevertheless, the probability of correct estimation, presented 
in Fig. 8, also shows comparable performance with a slight 
lead for the case of 10 neurons. Hence, 10 neurons per layer 
are adopted. 

Finally, the effect of the number of hidden layers in the 
network is examined, these networks are constructed with up 
to four hidden layers. All layers in all cases consist of 10 
neurons. In addition, all four networks are trained with a 
common training data set and are tested using another 
unknown data set. Fig. 9 and Fig. 10 present the performance 
evaluation measures. Both, the RMSE and the probability of 
correct estimation, show that among the four tested cases, 
using 3 hidden layers gives the best results.  

Now that we have chosen the best network structure, 
which uses 3 hidden layers and 10 neurons per layers and is 
trained by hybrid data with 1 𝑑𝐵 step, the transmitted signals 
from geophones in one sector were simulated to be received 
by their cluster-head. We inputted these signals to the chosen 
neural network. and calculated performance measures for this 
scenario. Results show that out of 18 different DOA of 
geophone signals, 17 of them were obtained with a resolution 
of one degree. This gives a probability of correct estimation 
of 94.44% also RMSE of the data is calculated and it was 
0.6218°. 

 
Fig. 7. RMSE for different number of neurons 

 
Fig. 8. Probability of correct DOA estimation for different number of 

neurons 

 
Fig. 9. RMSE for different number of hidden layers 

 
Fig. 10. Probability of correct DOA estimation for different number of 

hidden layers 

IV. CONCLUSION 

In this paper, we simulated a three-level wireless seismic 
survey model. The wireless seismic survey model was 
divided to hexagonal cells, and each cell is divided into three 
sectors. DOA estimation based on deep learning algorithm 
was considered and the performance of the neural network 
was investigated by varying three network parameters. The 
neural network that performed the best was selected to be 
applied in one sector of the seismic model between 
geophones and cluster-head nodes, which produced 
reasonably highly accurate results. In the future, DOA 
estimation could be utilized for geophone localization, which 
is essential for interpreting seismic data. 
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