
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

Improved Parallel ZF-VBLAST Detector for MIMO
System

Oruba Alfawaz1, Maha Alaa Eddin2, Khawla A. Alnajjar1and Ali A. El-Moursy2
1 Department of Electrical Engineering, 2 Department of Computer Engineering,

University of Sharjah, Sharjah, United Arab Emirates,
u17105772@sharjah.ac.ae, malaaeddin@sharjah.ac.ae, kalnajjar@sharjah.ac.ae and aelmoursy@sharjah.ac.ae

Abstract—The rapid growth of data traffic in the last decade
is expected to continue in the next generation (5G) system. In
order to service the high demand of data rates in 5G, complex
communication architectures are needed such as multiple input
multiple output (MIMO) technology. The main idea of MIMO is
to increase the number of antennas in both sides (transmitter
Tx and receiver Rx) that can achieve high throughput and
energy efficiency. Receivers complexity and speed are some of the
important requirements in MIMO systems. We focus on Vertical
Bell Laboratories Layered Space Time (VBLAST) receiver. Using
large number of antennas with VBLAST technique can increase
the complexity of the system and the required time to recover
the original signal. However, parallel computing can be used to
divide the tasks of complex algorithm and distribute them among
different microprocessors to run in an acceptable execution time.
In this paper, we perform deep performance and time analysis
to decide the opportunities of parallelization. We achieved speed
up of 11.4X in the computation time of ZF-VBLAST algorithm
for different sizes of MIMO systems using multi-threaded imple-
mentation.

Index Terms—Vertical Bell Labs Layered Space Time (V-
BLAST), multiple input multiple output (MIMO), zero forcing
(ZF), parallel computing, multithreading.

I. INTRODUCTION

The demand of high data rate, lower latencies and quality of
service are increasing with every new generation of wireless
communication. The 5th generation mobile technology 5G
achieves better communication between anybody, anything,
anytime and anywhere by using anyhow devices, networks and
technologies such as multiple input multiple output (MIMO)
[1]. MIMO is a promising technique to increase the capa-
bilities of the base stations and cope with increasing data
demand. The idea behind MIMO is to get large number
of antennas in both transmitter and receiver [2]. A receiver
receives the transmitted signal and recovers the original signal
or the desired signal while reducing the effect of noise and
interference. There are two types of receivers or detectors:
linear and non-linear. Linear detectors are using linear detec-
tion technique to filter the received signal, such as maximum
ratio combiner (MRC), zero forcing (ZF) and minimum mean
square error (MMSE). While non-linear detectors are using
non-linear technique such as maximum likelihood (ML) and
successive interference cancelling (SIC) [3]. Increasing the

number of antennas in MIMO increases the receiver complex-
ity, hardware implementation as well as the execution time.
Using parallel computing allows complex algorithms to be
implemented efficiently, reduce the computational complexity
and may achieve a significant speed up of the execution time
in the wireless communication systems [4]. Parallel computing
is a computation method, which can handle many executions
or calculations at the same time [5].

Conventionally the instructions are constructed in a serial
form to run on a single central processing unit (CPU) and only
one instruction can be executed at a time. On the other hand,
the parallel form allows many instructions to be executed at the
same time using different hardware and software techniques
[6]. Parallelization breaks down the task or problem into sub-
tasks that can be executed simultaneously. The main objective
of using parallelization is to reduce the time required to
execute the instructions to solve large and complex problems.
The initial steps in parallelization technique are to understand
the serial algorithm, identify the hot-spots and bottlenecks of
the program to distinguish the compute intensive sections.
Based on that, an appropriate parallelization technique is
implemented [4]. Shared memory, distributed memory and
hybrid are different models of parallel processing. In shared
memory, tasks share common address space where different
CPUs access the same random access memory (RAM). Alter-
natively, distributed memory model has numbers of processors,
which gives scalability to distributed memory. Hybrid model
combines two different parallel programming models [7].

In [8], flex-core graphical processing unit (GPU) implemen-
tation along sphere detector with large scale MIMO achieved
better detection performance than SIC. In [9], massively par-
allel processor array with iterative algorithm was proposed to
accelerate the detection process in large scale MIMO system.
The performance of the proposed algorithm was enhanced
compared with the conventional detectors as shown in the
results. In [10], multi core and GPU were used for the equality
number of transmitter and receiver MIMO system ZF SIC
detector. CUDA failed to speed up sequential version for small
number of signals due to low complexity and non-parallel
pattern, while achieved speed up where large MIMO are
considered. CUDA increases the execution time for optimized
ZF SIC. Open MP cannot parallelize ZF SIC since determined
component depends on the previous computations.978-1-7281-6535-6/20/$31.00 © 2020 IEEE

ICCSPA20 1570627283

1

The aim of this paper is to reduce the execution time of ZF-
VBLAST detector for MIMO system using the parallelization
techniques. However, to achieve this goal a deep performance
analysis and a task dependency investigation had been done
to explore the parallelization opportunities.

The rest of this paper is arranged as follows. Section II
describes the system model. The parallel ZF-VBLAST is
illustrated in Section III. Section IV discusses the experimental
setup and results, and Section V gives the conclusions.

II. SYSTEM MODEL

Assuming number of receivers (Nr) is serving number of
transmitters (Nt), the received signal y for this uplink model
is calculated by

y = Hx+ n =
∑Nt

m=1
hmxm + n, (1)

where H= [h1 h2 hNt] is the Nr ×Nt channel matrix,
x = [x1x2 . . .xNt

]T is the Nt × 1 transmitted vector, y =
[y1y2 yNr

]T is the Nr×1 received vector and n = [n1n2

. . . . nNr]T is Nr × 1 noise vector (Gaussian noise) [11]. ZF
combiner requires the number of transmitted antennas (Nt)
to be less than or equal to the number of received antennas
(Nr). This is due to the nulling operation to eliminate the
interference. The ZF detector can be calculated by

W = H(HHH)−1. (2)

The estimated output is

b = WHy. (3)

Vertical Bell Laboratories Layered Space Time (VBLAST)
is a wireless algorithm that detects the transmitted signal
according to the ordering. Then, it uses the traditional detectors
such as linear detectors [11]. VBLAST increases the channel
capacity and its complexity comes from the ordering of matrix
inversion. VBLAST detector firstly detects the stream with
the highest power, then it continues the detection using the
traditional methods. The main steps of VBLAST are: ordering
to know the index of the signal, nulling the unwanted signal,
and cancellation to subtract the detected signal from the
received signal [12]. Here, we focus on ZF-VBLAST receiver
which uses the linear ZF for nulling.

III. THE PARALLEL ZF-VBLAST STRUCTURE

Generally, the ZF-VBLAST algorithm consists of five tasks
that are explained through the flowchart in Fig. 1. Note that
the flowchart shows input output relationship by f(.). Task 1
generates the transmitted vector (x), the noise vector (n) and
the channel matrix (H). Task 2 calculates the received signal
(y) and the matrix (W). In task 3, ordering nulling, slicing and
canceling are performed. Task 4 updates the channel matrix.
In task 5, the average of error is calculated [11]. We parallelize
the channel realization loop which includes the tasks from 1 to
4 using multi-threading. In multithreading we use 2, 4, 8 and
16 cores to check the enhancement of speedup comparing with
serial time (one core). When the threads are created, the master

calls the slaves, distributes the number of loop iterations
equally among the slaves to guarantee the load balancing
and waits them to finish, once the master communicates with
the slaves and knows that they have finished the job, then
the master concludes the final results. The synchronization is
performed through wait and signal functions and the atomic
update predicates.

A. Complexity Analysis

Using VBLAST technique gives better performance for
MIMO system but increases the computational complexity.
Complexity analysis allows the evaluation of the time required
to recover the original signal which defines as the number of
operations in terms of floating point operations per second
(FLOPS). The complexity of ZF can be calculated using
number of flops for real and complex of operations; real
addition, complex addition, real multiplication and complex
multiplication. It is shown that the complexity of the linear
ZF can be calculated in terms of flops by [13]

C
(flops)
ZF = 7N3

t + 7N2
tN r − 2N t + 4N tN r

+
1

2
N rlog2(M), (4)

where M signifies the type of modulation. For example, M =
2 when the modulation type is a binary phase shift keying
(BPSK). The complexity of ZF-VBLAST in terms of flops
can be calculated by [13]

CZF−VBLAST
(flops) = N t

4 +
5

3
N t

3 +
8

3
N t

3N r

+
3

4
N t

2 +
7

2
N t

2N r +
55

6
N tN r

− 17

2
N t +

1

2
N tlog2(M). (5)

With reference to the flowchart in Fig. 1, analysis applied to
parallelize the number of experiments for different channel
realizations loop that include the iterative process with tasks
from 1 to 4. Dependency analysis is formed to verify the ability
of parallelization. Moreover, execution time analysis is applied
to verify the computationally intensive tasks in the algorithm.
The call graph in Fig. 2 is generated using gprof, which is
performance analysis tool for Linux to perform time analysis
for ZF-VBLAST algorithm and display the percentage of time
spent in each task.

2

�����

�����	
���

�����	
�����

�����

�	�����

�	��������

�	�����

������

�	����������

�	����

������

�	����

 	��������

!	�� �

�	������!���

����"	
���

��#	!

$����	

�����%

������	&�'

$�(������"

$�(�������

�����)

$������*��+*	��$�������������

$�(�������

$�(�

,*�

��

Fig. 1: Detailed Flow Chart for ZF-VBLAST Algorithm.

The call graph shows that the algorithm is fully dependent
and the major computation time of the algorithm is spent in
calculating the weight of the matrix W , which is 35.78%
as shown in Fig. 2. Therefore, some experiments are carried
out to measure the serial time and the parallel time for the

channel realization loop iterations for different MIMO sizes
and different number of threads. Parallelization is affected by
Nt, Nr and the number of channel realization.

IV. EXPERIMENTAL SETUP AND RESULTS

This section tests the ability to parallelize the ZF- VBLAST
algorithm. In addition, we evaluate the achieved speed up for
ZF-VBLAST algorithm using multithreaded implementation.
The multithreaded implementation is performed on a server
with up to 48 cores employed for the experiments. Our server
is Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60G and 128GB
of RAM. We implement ZF and ZF-VBLAST uplink multi
users MIMO system in MATLAB. The Experimental results
show the performance of MIMO system based on symbol error
rate (SER) versus signal to noise ratio (SNR) using BPSK
modulation and two different techniques of detection the linear
ZF detector and the nonlinear ZF-VBLAST detector. We use
different MIMO systems sizes NtxNr which are (10 × 10)
and (10× 100), for 1000 and 10000 channel realization loop.
It is clearly shown in Fig. 3 that ZF-VBLAST is better
than the linear ZF. ZF-VBLAST algorithm it is converted to
C++ Armadillo version 9.7 linear algebra library for the C++
language. The C++ (g++ 5.4) for Ubuntu is used to compile
the code with -04 compiler optimization level. We measure
the parallel time by running the experiments with different
number of threads 2, 4, 8 and 16.

As mentioned in Section III, some experiments are imple-
mented to evaluate the serial time and the parallel time of
parallelizing the channel realization loop iterations for two
different MIMO sizes (10× 10) and (10× 100) and different
number of threads. The time analysis for (10 × 10) MIMO
system is performed when Nt = 10 and Nr = 10 of channel
realization 1000 and 10000, respectively. Then same experi-
ments were implemented but when Nt = 10 and Nr = 100 of
channel realization 1000 and 10000. Figures 4 and 5 show the
effect of increasing the number of cores (X-axis) on the scaling
of the speed up (Y-axis). We run the experiments with serial
and parallel implementation and calculate the achieved speed
up for parallelizing the channel realization loop iterations. The
parallelization for 1000 channels achieves maximum speed up
of 3.5X, where X is a multiple time, for (10 × 10) MIMO
systems, and for (10×100) MIMO systems achieves maximum
speed up 7X for 16 cores as shown in Fig. 4.

Then, the same experiments were carried out, but with
10000 channels as shown in Fig. 5. These experiments shows
that parallelization for (10×10) MIMO system achieves maxi-
mum speed up of 5.8X for 16 cores, and for (10×100) MIMO
system achieves maximum speed up 11.4X. An increase in
the speed up has been noticed with 10000 channels compared
with the 1000 channels. To explain that Fig. 6 shows that
the speed up was affected while changing the number of
channels. We have used a master-slave model [14] for the
parallel algorithm in which the master node assigns tasks to
the slave threads. Therefore, synchronization is required to run
all tasks among the slave threads. That is why some analysis
performed to check the synchronization time for parallelizing

3

Fig. 2: Call Graph for ZF-VBLAST Algorithm

Fig. 3: The Performance of ZF and ZF-VBLAST.

Fig. 4: Speed Up versus Number of Cores for 10× 10 and
10× 100 MIMO Systems with 1000 Channels

Fig. 5: Speed up versus Number of Channels for 10× 10
and 10× 100 MIMO Systems with 10000 Channels

Fig. 6: The Effect of the Number of Channels over Speed up
for 10× 100 MIMO System

4

Fig. 7: Time versus Number of Cores for 10× 100 MIMO
System with 10000 Channels

the channel loop. This is done using (10×100) MIMO system
with 10000 channels as shown in Fig. 7. Its is clear that the
synchronization time is small and linear. As well, the master
time to assign tasks and slave time to perform the assigns tasks
by the master node decreases with increasing the number of
cores.

All results of parallelizing the channel realization shown
from Fig. 4 to Fig. 7 improves the efficiency of the ZF-
VBLAST. As illustrated in Section III, we verified the ability
to parallelize the VBLAST algorithm. Graph dependency
using gprof indicates that the algorithm is fully dependent. We
realized that the major computation time is spent in calculating
the weight matrix W . Because of the limited time involved to
calculate the weight matrix W , the synchronization time is
greater than the serial time as shown in the experiment in Fig.
8.

V. CONCLUSIONS

We succeed in getting speed up of ZF-VBLAST algorithm
for different sizes of MIMO system (10× 10) and (10× 100)
using different numbers of threads (2, 4, 8 and 16). The
obtained maximum speed up is 11.4X which can be achieved
by increasing the system size and channel realization loop
which leads improving the performance of the ZF-VBLAST
algorithm. Despite of the high dependency in the VBLAST al-
gorithm and the resultant high synchronization time compared
with the serial time, we achieved a speed up from parallelizing
the channel loop.

ACKNOWLEDGMENT

This research is supported in part by a University of Sharjah
Targeted Project no. 1602040336-P and in part by the Dis-
tributed and Networked Systems Research Group Operating
Grant number 150410, University of Sharjah.

Fig. 8: Time versus Number of Cores for 10× 100 MIMO
System with 10000 Channels

REFERENCES

[1] C. Wang et al., “Cellular architecture and key technologies for 5G
wireless communication networks,” IEEE communications magazine,
no. 2, pp. 122–130, 2014.

[2] L. Lu et al., “An overview of massive MIMO: Benefits and challenges,”
IEEE journal of selected topics in signal processing, no. 5, pp. 742–758,
2014.

[3] W. Zhongpeng, “Iterative detection and decoding with PIC algorithm
for MIMO-OFDM systems,” Scientific Research Publishing, Int’l J. of
Communications, Network and System Sciences, 2009.

[4] A. I. Elnashar, “To parallelize or not to parallelize, speed up issue,”
arXiv preprint arXiv:1103.5616, 2011.

[5] V. Kumar et al., Introduction to parallel computing, 1994.
[6] B. Barney et al., “Introduction to parallel computing,” Lawrence Liver-

more National Laboratory, no. 13, p. 10, 2010.
[7] H. Khaled et al., “Parallel study of 3-D oil reservoir data visualization

tool using hybrid distributed/shared-memory models,” in 2018 IEEE
16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th
Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.
1016–1021.

[8] C. Husmann et al., “Flexcore: massively parallel and flexible processing
for large {MIMO} access points,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017, pp.
197–211.

[9] G. Hegde et al., “Parallel low-complexity M-PSK detector for large-
scale MIMO systems,” in 2016 IEEE Sensor Array and Multichannel
Signal Processing Workshop (SAM), 2016, pp. 1–5.

[10] C. Ramiro et al., “MIMOPack: a high-performance computing library
for MIMO communication systems,” Springer, The Journal of Super-
computing, vol. 71, no. 2, pp. 751–760, 2015.

[11] K. Alnajjar et al., “Low complexity V-BLAST for massive MIMO,” in
IEEE 2014 Australian Communications Theory Workshop (AusCTW),
2014, pp. 22–26.

[12] J. Choi et al., “Improved linear soft-input soft-output detection via soft
feedback successive interference cancellation,” IEEE Transactions on
Communications, no. 3, pp. 986–996, 2010.

[13] A. M. Elshokry, “Complexity and performance evaluation of detection
schemes for spatial multiplexing MIMO systems,” Islamic University
Gaza, M. S. thesis, 2010.

[14] S. Sahni and G. Vairaktarakis, “The master-slave paradigm in parallel
computer and industrial settings,” Journal of Global Optimization, vol. 9,
no. 3-4, pp. 357–377, 1996.

5

