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Abstract—Intelligent Transportation Systems (ITS) are nowa-
days considered very important applications of smart cities. One
of the most important technologies that are utilized to support
ITS is Vehicular Ad-hoc Networks (VANETs). In VANETs,
vehicles communicate with each other (V2V) or with the in-
frastructure (Roadside Units) (V2I). Roadside Units (RSUs)
collect data from vehicles in the coverage area and send it to
cloud servers through the Internet. Cloud servers have high
performance computational and storage capabilities that ITS
applications require for data processing. However, due to the
real-time requirements of the ITS applications, cloud approach
alone cannot be guaranteed to satisfy the strict time constraints
due to long latency access of the centralized cloud server. Fog
Computing is an emerging approach that extends the services
of cloud computing to the edge of the network. Fog Computing
can be utilized in VANETs through deployment of fog nodes into
RSUs. One of the major challenges is identifying the optimum
number, locations and computational capabilities of the RSUs
particularly in urban regions where obstacles exist heavily inside
the coverage area of the RSUs. In this paper, we consider the
optimization problem of fog-based RSU placement where the
objective is to maximize the achieved level of service quality in a
cost-effective way. The problem is formulated as a Satisfiability
Modulo Theories (SMT) problem and solved using Microsoft Z3.
The proposed approach is able to generate a set of solutions as
Pareto front. We obtained data from OpenStreetMap for Cairo
city. Our approach outperforms other solutions in the literature
in terms of cost.

Index Terms—Fog Computing, VANET, Roadside Units

I. INTRODUCTION

An important part in the planning process of smart cities
is considering an efficient transportation system to cope with
the increasing number of vehicles and maximize road safety.
Vehicular Ad-hoc Network (VANET) in smart cities provides
many services including autonomous driving and congestion
avoidance applications. In VANET, a vehicle exchanges mes-
sages with several entities including other vehicles, traffic
lights, road side units or even pedestrians. Road side units
(RSUs) are considered the backbone of the VANET. RSUs

collect data from vehicles in the coverage area and deliver
them to the cloud for heavy data processing and the offline
data analysis and statistics. They exchange messages using
a wireless communication technology such as the Dedicated
Short Range Communication (DSRC) technology [1], [2].

Fog Computing is a promising emerging approach that
extends the computation, storage and networking services of
cloud computing to the edge of the network near the source
of the generated data [3]. A Fog Computing architecture is a
three layer architecture (the end device (data source), the fog
layer, and the cloud layer). The fog layer is the intermediate
layer between the data source and the cloud server. A fog
node is a compute/storage node that is able to perform partial
processing of time critical data while further processing is
handled in the cloud layer. Examples of fog devices include
end user devices, access points and routers. As Fog Computing
is implemented at the edge of the network, it provides low
latency access due to its location awareness. It improves
QoS for streaming and real time applications [3]. Researchers
proposed different solutions, applications and platforms based
on the Fog Computing paradigm [4].

In the context of vehicular technologies, the concept of
Fog Computing is adopted in many VANET applications. It
is assumed that the fog nodes are deployed at the RSUs.
The distribution and location of fog-based RSUs in a VANET
have a direct impact on the achieved QoS of the application.
Several optimization techniques have been applied to solve the
RSU placement problem [5], [6]. Most of the work done aims
to maximize the achieved QoS in terms of connectivity. The
limited computational capabilities of the RSUs as fog nodes
are not taken into consideration. Furthermore, the impact of
obstacles in the coverage region is not considered in most of
the proposed work. Obstacles have direct impact on signal
propagation that causes signal attenuation and accordingly
some areas turn to be out of coverage.

In this paper we develop Fog-based RSU Optimum Con-
figuration and Localization (Fog-ROCL) technique to solve
the optimization problem of RSU placement. We address the978-1-7281-6535-6/20/$31.00 ©2020 IEEE
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challenges of optimal fog-based RSU distribution in a target
coverage area using a cost-effective approach to satisfy a set of
quality measures including coverage and processing demand.
The contributions of this paper are summarized as follows.
We develop a new model for the RSU optimum distribution
problem and formulate this problem as a Satisfiability Modulo
Theories (SMT) problem. The proposed model features the
heterogeneity of RSUs in terms of computational capabilities
to add flexibility and reality to the fog system. Our proposed
approach solves the optimization problem using Z3, the SMT
solver, and generates the optimum trade-off between cost and
the achieved QoS of each configuration.

The rest of the paper is organized as follows: in section II,
the previous work in literature is reviewed. In section III, the
Fog-ROCL method is explained. The experimental setup and
methodology is described in section IV. Results are discussed
in section V. Section VI includes conclusion and discussion.

II. RELATED WORK

The optimization problem of RSU placement has been
investigated in several prior art [5]–[7]. In [5], the authors
propose a model that facilitates V2V and multi-hop com-
munication. The authors propose a method based on genetic
algorithm to solve the optimization problem. The objective
is to find the number and optimal locations of RSUs while
considering the application delay requirements. However, their
model does not support the Fog Computing concept where
the application response time and the QoS could be violated
in a multi-hop communication network. They assume a fixed
radius of coverage for the RSUs which is unrealistic since
in obstacle-dense urban regions, there is high probability that
signals hit an obstacle before reaching their destinations. This
causes variable attenuation to the signals that depends on the
obstacle characteristics and the existence of Line of Sight
(LoS) communication between the sender and the receiver.

In [6], the proposed model supports the fog-based RSU
architecture. The problem is modeled as an Integer Linear
Programming problem. The target is to find the locations
of RSUs such that their cost is reduced by deciding where
to place the fog nodes as well as whether to couple or
decouple the fog device to the RSU. The model supports the
computation and storage capacity of the fog nodes. However,
authors assume a fixed coverage radius of the RSU and no
support for the signal attenuation modeling.

The RSU-opt method proposed in [7] is the closest to our
work. The problem is modeled as a Mixed-Integer Linear
Programming (MILP) problem. The objective is to find the
optimal number and locations of RSUs with the minimum
cost. Application-specific QoS constraints have to be satisfied.
These constraints are expressed as the coverage percentage
of the roads and the percentage of satisfied computational
demand. The authors assume that the fog-based RSU is
equipped with a specific computational server capacity (CPU
cycles). The impact of obstacles is also modeled based on the
free space path-loss and obstacle shadowing model. However,
they only consider homogeneous RSUs equipped with a single

processor (processor types are identical in terms of CPU
cycles).

We propose a new RSU placement for VANET namely Fog-
ROCL. We relax the assumptions of [7] to have heterogeneous
RSUs. We utilize the concept of Satisfiability Modulo Theories
(SMT) to solve a multi-objective optimization problem. Our
target is to find the number, locations and processing capacity
of the RSUs such that cost is minimized and the QoS is
maximized. Our method generates a set of alternative solutions
as Pareto front that allows the service provider for more
efficient network decision.

III. FOG-BASED RSU OPTIMUM CONFIGURATION AND
LOCALIZATION

SMT solvers have proved their efficiency in solving many
problems including software and hardware verification. The
SMT concept is also applied in optimum IC placement [8],
optimum task scheduling [9], robot motion planning [10] and
many real world applications. They generate better results
compared to other methodologies including those which are
based on MILP. We believe that SMT is a promising approach
for solving the RSU optimum distribution problem. To the
best of our knowledge, we are the first to formulate and solve
the RSU optimum distribution problem using SMT. In this
section, we first introduce the concept of SMT that we use
to formulate and solve the optimization problem. Then we
describe the proposed model.

Satisfiability Modulo Theories (SMT) uses the concept of
propositional Satisfiability (SAT) [11]. SAT is used to decide
whether a boolean formula expressing constraints has a solu-
tion that makes it evaluate to true. If a solution is found then
the problem is said to be satisfiable. Otherwise, the problem is
unsatisfiable. The SAT problem input is a propositional logical
formula F in CNF (Conjunctive Normal Form). CNF is the
conjunction of clauses. A clause is the disjunction of literals
(a literal is a boolean variable or its negation). The following
formula is an example of a SAT input.

F = (x1 ∨ x2) ∧ (¬x1 ∨ x3) (1)

Some problems need more expressive logic such as the first-
order logic. SMT is used to decide the Satisfiability of first-
order logical formula with respect to a background theory.
Examples of theories include: integers, reals, arrays and bit-
vectors. An SMT solver combines a SAT solver and a theory
solver. The SMT solver generates assignments for the variables
which are consistent with the background theory.

We choose Microsoft Z3 [12] to solve the optimization prob-
lem. Z3 is an SMT solver developed by Microsoft Research.
Z3 supports many theories such as theory of real arithmetic,
integer arithmetic, bit vectors, etc. However, the solution of an
SMT problem is a feasible solution, not an optimal solution.
After the development of νZ [13], an extension to Z3 solver
developed by Microsoft Research that handles the optimization
problems, solving the optimization problems using Z3 became
possible. νZ also supports multi-objective optimization in
three different modes: lexicographic, independent objectives
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and Pareto front [13]. We use νZ in our work to generate
the Pareto front that represents the set of the best trade-off
between cost and the achieved QoS.

We consider a scenario of a smart city where vehicles are
moving in urban area as illustrated in Fig. 1. Our assumptions
are:

1. Each vehicle runs an application and sends data collected
by sensors to the road-side units (RSUs) for processing.

2. Vehicles are connected directly to the RSUs (V2I com-
munication) through DSRC.

3. A fog node is an RSU equipped with a computational
server. In the rest of this paper, it is referred to as ”RSU”.
The RSU is connected to the internet where a cloud server
is available for further data processing.

We consider the target area as a set of N square cells in the
x-y plane. Initially, each cell has a size of L x L where L
is the side length of the square cell in meters. Each cell is
a potential location of a single RSU. The location of the
RSU within the cell is chosen such that it is the nearest
point to the center and located on a road. The adjacency
matrix Ai,j describes whether RSU deployed at cell i covers
the roads inside cell j or not. The computational demand in
each cell Di is described in terms of the maximum number
of requested messages to be processed per second in cell i.
We assume that each RSU is equipped with a single CPU
and the RSUs are not homogeneous. The processors in RSUs
are not identical in terms of CPU computation power. We
describe the computational capacity of the RSU in terms of
the total number of messages the RSU processor can process
per second. If a new message arrives at the RSU when the
processor is busy processing other messages, the message is
dropped. The number of dropped messages is a QoS metric.
Higher number of dropped messages denotes poor QoS.

The QoS is described as the road coverage percentage of
the area α and the percentage of the satisfied computational
demand γ. Our target is to find the optimal configuration of
RSUs such that α and γ are maximized with minimum cost.
However, there is a minimum acceptable level of QoS that has

Fig. 1. Smart city scenario.

to be satisfied, αth and γth. Table I summarizes the notation
used in the problem formulation.

The problem is formulated as a multi-objective optimization
problem and it is solved based on the concept of Satisfiability
Modulo Theories (SMT) where boolean satisfiability is com-
bined with theory of integer arithmetic. Microsoft Z3 is used
as the solver with the help of νZ in Pareto front mode. The
solution represents the best trade-off among the objectives.
The problem is formulated as follows:

min
N−1∑
i=0

CYi +
N−1∑
i=0

P−1∑
k=0

akXi,k (2)

max α = (

N−1∑
j=0

HjLj

N−1∑
j=0

Lj

)% (3)

max γ = (

N−1∑
j=0

HjDj

N−1∑
j=0

Dj

)% (4)

α ≥ αth (5)

γ ≥ γth (6)

Hj =
N−1∨
i=0

Zj,i ∀j (7)

Yi =

P−1∨
k=0

Xi,k ∀i (8)

TABLE I
FOG-ROCL NOTATION FOR PROBLEM FORMULATION

Symbol Type Description
N int Number of grid cells
P int Number of CPU types
C int RSU fixed cost
ak int Cost of CPU type k
mk int Max. processing capacity of CPU type k
Xi,k bool indicates if a CPU of type k is deployed inside

the RSU deployed at cell i
Yi bool Indicates if there is a RSU deployed at cell i
Zj,i bool Indicates that a RSU is deployed at cell i

and this RSU covers cell j in terms of both
coverage and computational demand

Hj bool Indicates if cell j is covered
A matrix of

bool
The adjacency matrix. Ai,j indicates which
cells j are covered if a RSU is deployed at
cell i

Dj int Demand at cell j
Lj int Total length of roads at cell j
α int: [0, 100] Coverage Percentage
γ int: [0, 100] Percentage of satisfied demand
αth int: [0, 100] Minimum acceptable coverage percentage
γth int: [0, 100] Minimum acceptable percentage of the satis-

fied demand
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Zj,i → Yi ∧Ai,j ∀i, j (9)

N−1∑
j=0

DjZj,i ≤
P−1∑
k=0

mkXi,k ∀i (10)

P−1∑
k=0

Xi,k ≤ 1 ∀i (11)

The objectives of the optimization problem is represented by
(2), (3) and (4). Equation (2) describes the total cost. The
first term represents the total fixed cost while the second
term represents the total cost of the CPUs inside all of the
RSUs. Equation (3) describes the road coverage percentage.
Equation (4) describes the percentage of the satisfied demand.
The constraints are represented by (5)-(11). Equations (5) and
(6) ensure that a minimum level of QoS is achieved. Equation
(7) sets Hj to true if there is any RSU at any cell i that
covers cell j. Equation (8) describes that cell i has an RSU if
there is any CPU of any type k deployed at cell i. For Zj,i

to be true, there are two constraints that must be fulfilled.
The first constraint is described by the implication relation in
(9). This relation ensures that if Zj,i is true then there must
be a RSU at cell i (Yi is true) and the signal transmitted by
this RSU covers cell j (Ai,j is true). The second constraint is
described by (10) which ensures that the total computational
demand generated by vehicles at cell j does not exceed the total
processing capacity of the RSU deployed at cell i. Equation
(11) ensures that the RSU is equipped with a single CPU of
type k at maximum.

IV. EXPERIMENTAL SETUP

Our methodology is divided into 3 main modules: the pre-
processing module, the optimization module and the evaluation
module.

A. The pre-processing Module

A map of Cairo city is used as the target area to evaluate
the proposed solution. Data about roads and obstacles are
obtained from OpenStreetMap1. The map covers 2.2 x 1.9
square kilometers. We used SUMO (Simulation of Urban
MObility) framework [14] and its tools to extract the network
as a set of line segments and the obstacles as polygons. We
wrote a script using Python with the help of Shapely2, a python
package for manipulation and analysis of geometric objects,
to divide the map into a set of cells in the x-y Cartesian
coordinates. Each cell has a candidate location for an RSU.
The exact candidate RSU location within a cell is chosen such
that it is the nearest point to the center that is located on a
road.

Due to the obstacles in each cell (buildings and walls
attenuating the signals between vehicles and RSUs), there are
some cells that cannot be covered by only one RSU. In such
case, each cell is divided into 4 smaller square cells of equal
sizes. The division process is done recursively until each cell

1https://www.openstreetmap.org
2https://pypi.org/project/Shapely

is covered by a single RSU. Fig. 2 describes how the cell is
divided. Shaded cells are excluded from the set due to lack of
roads. Dots represent candidate locations for the RSUs.

To calculate the adjacency matrix, the free space path
loss propagation model combined with obstacle shadowing
proposed in [15] is applied to calculate the coverage range of
the RSUs. We set Ai,j to true if at least 90% of the vehicles
in cell j can receive a signal above the receiver’s sensitivity
transmitted from cell i.

B. The Optimization Module

To solve the optimization problem, we have to calculate
the computational demand in each cell in terms of maximum
number of generated messages per second. We used SUMO
floating car data (FCD) output to calculate the maximum num-
ber of vehicles in each cell from the traffic trace. A random
traffic trace is generated using the SUMO randomTrips tool
where the scenario runs for 200s. The number of vehicles in
each cell is mapped into computational demand by multiplying
the number of vehicles by the number of messages generated
by a single vehicle per second.

C. The Evaluation Module

To evaluate our proposed Fog-ROCL method, we use the
simulation framework Veins [16] version 4.7.0. Veins is an
open source framework that integrates OMNet++ network
simulator with SUMO traffic simulator.

D. Methodology

We solve the optimization problem using Microsoft Z3
using its Python APIs. All instances run for 200 seconds using
the same traffic trace. We set the values of both αth and γth to
70% and the cell size L to 400m. We use simulation parameters
similar to [7]. Transmission power is set to 21 dBm, receiver’s
sensitivity is set to -100 dBm, message size is set to 160 bytes
and message exchange frequency is set to 1 Hz. It is assumed
that:

1. There are 4 different types of processor capacities: 25,
50, 100 and 150 messages/s (type 0, type 1, type 2, type
3 respectively).

Fig. 2. The map division process.
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2. The RSU cost = the RSU fixed cost + total cost of
processors equipped inside the RSU.

3. The same fixed cost for all RSUs of 500$ each.
4. The processor costs are 100, 200, 400 and 600$.

The solver generates Pareto front that represents the best trade-
off among: number of RSUs (R), cost, coverage percentage
(α) and percentage of satisfied demand (γ). The solver also
generates the locations of RSUs.

For comparison, we consider the RSU-opt method proposed
in [7] and described in section II. The RSU-opt method gener-
ates a single solution per run. We set coverage percentage and
computational demand both to 100% and solve the problem
based on their proposed model using CPLEX3. We compare
the solution obtained by CPLEX with the Pareto solution
generated by Fog-ROCL that gives 100% coverage and 100%
satisfied demand. Since the RSU-opt method supports a single
CPU type, we run the simulation for 2 runs with different CPU
capacities. In the first run it is set to 25 message/s while in
the second run it is set to 100 message/s. The following are
the metrics used for the evaluation:

• The packet-loss (percentage): the number of messages
that are not successfully received by the receiver. A better
solution has a lower packet-loss value.

Packet loss =
messages sent - messages received

messages sent
% (12)

• Dropped-messages (percentage): the number of messages
that are received by the RSU but could not be processed
due to lack of available CPU capacity. A better solution
has a lower drop value.

Dropped messages =
messages dropped by RSUs

messages generated by vehicles
%

(13)
• The total RSU cost ($): a better solution has lower cost.
• Number of RSUs: a better solution has a fewer number of

RSUs; as the number of RSUs increases, the interference
between signals increases. Hence, deployment of a fewer
number of RSUs that gives the same QoS is better.

V. RESULTS

We first study the impact of cell size on the execution time.
Table II compares the impact of three different cell sizes:
400m, 600m and 800m. Dividing the map into smaller cells
is more accurate. However, it consumes more time during
preprocessing to calculate the adjacency matrix. Smaller cells
result in larger number of candidate locations which increases
the size of the adjacency matrix. Larger cells result in less
number of locations. However, they are subjected to multiple
and recursive division process especially in obstacle dense
cells. On the other hand, Z3 consumes much time as the
number of candidate location increases because the solver
has to search for the optimal solution among a larger set of
possible locations.

Table III shows a comparison among the results obtained
by the RSU-opt method proposed in [7] and our proposed

3https://www.ibm.com/products/ilog-cplex-optimization-studio

TABLE II
IMPACT OF CELL SIZE ON THE EXECUTION TIME OF Z3.

Cell size (m2) 400x400 600x600 800x800
# Initial cells
(Before division)

22 10 8

# Candidate locations
(After division)

45 39 22

Execution time (s)
(Preprocessing)

52 47 23

Execution time (s)
(Z3)

20 13 0.7

TABLE III
SIMULATION RESULTS FOR RSU-OPT AND FOG-ROCL FOR 100%

SOLUTION.

RSU-opt
(25 msg/s)

RSU-opt
(100 msg/s)

Fog-ROCL

# RSUs 12 9 9 (7 of type
0, 1 of type 2
and 1 of type
3)

Cost 7200 $ 8100 $ 6200 $

Packet-loss 1% 0.7% 0.9%
Dropped
messages%

35% 0.0% 0.001%

Fog-ROCL method. Cell size is set to 400m and the number
of initial candidate locations is 45. The 100% solution (100%
coverage and 100% satisfied demand) is obtained using RSU-
opt by 12 RSUs deployed with total cost of 7200 $ and CPU
type of capacity 25 messages/s. While it is obtained using
the same RSU-opt method by 9 RSUs deployed with total
cost of 8100 $ and CPU type of capacity 100 messages/s.
There is a great enhancement in the dropped messages% (from
35% to almost 0%) as the RSU capacities increased and can
handle much traffic demand than the RSUs with 25 messages/s
capacity. However, increasing the capacities of all RSUs is not
cost effective as less capacities may be sufficient for some cells
with no need to increase their RSU computational capacities.

The last column in Table III illustrates the results of our
proposed Fog-ROCL method. Both αth and γth are set to
70%. The 100% solution is obtained using Fog-ROCL by 9
RSUs deployed with total cost of 6200 $. Results obtained
by Fog-ROCL outperform results obtained by RSU-opt with
CPU capacity set to 25 messages/s in terms of dropped
message percentage (almost 0.0% vs. 35%). This enhancement
is obtained as the computational capabilities of each RSU is
assigned based on the computational demand generated in its
coverage area. Assignment of identical CPUs of 25 messages/s
computational capacity in RSU-opt raises the dropped per-
centage to 35% as the computational demand in some cells
exceeds the RSU capability. Fog-ROCL is more cost effective
than RSU-opt with capacity set to 100 messages/s (8100 $ vs.
6200 $) while the packet loss and dropped messages values are
very much close. As a result, the proposed Fog-ROCL method
is better than the RSU-opt method. The RSUs capacities are
selected from a pool of different capacities such that they
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satisfy the different computational demand in each cell with
less cost than the RSU-opt method.

Fog-ROCL generates 12 different solutions in the Pareto
set, not only the 100% solution, in 20 seconds. Due to space
limit, we cannot list all of the 12 solutions. However, some of
the Pareto front solutions are listed in Table IV. For instance,
solution number 1 achieves 100% for both coverage and
satisfied demand by the deployment of 9 RSUs of cost 6200$.
Seven RSUs out of the 9 are equipped with a single CPU of
type 0, One RSU is equipped with a single CPU of type 2, and
one RSU is equipped with a CPU of type 3. We test solution
#3 in Table IV (86% for coverage and 82% for demand) with
cost 1600$ vs. the 100% solution with 6200$. Results are
illustrated in table V. The packet loss increased from 0.9%
to 2% and the dropped messages increased from 0.001% to
1.7%. The service providers have to select the best trade-off
according to their criteria. As the size of Pareto front increases
in larger instances, it would not be feasible for the user to
manually select a single solution among the generated set.
As a result, we recommend the automation of the post-Pareto
analysis based on the user-defined criteria, which is part of
our future work.

VI. CONCLUSION

This paper discusses the problem of optimal deployment
and localization of fog-based RSUs in urban area. We propose
Fog-ROCL, a model that solves the problem as a multi-
objective optimization problem using the concept of SMT to
solve the problem. The objective is to obtain a cost-effective
configuration that maximizes the QoS represented in coverage

TABLE IV
PARETO FRONT OBTAINED BY FOG-ROCL.

# #RSUs Cost ($) Coverage
(%)

Satisfied de-
mand (%)

1 9 [7 X type
0, 1 X type
2, 1 X type
3]

6200 100 100

2 4 [2 X type
0, 1 X type
2, 1 X type
3]

3200 98 99

3 2 [1 X type
1, 1 X type
2]

1600 86 82

TABLE V
COMPARISON BETWEEN SOLUTIONS #1 AND #3 GENERATED BY

FOG-ROCL.

Solution # #1 #3
# RSUs 9

(7 of type 0, 1 of
type 2 and 1 of
type 3)

2
(1 of type 1 and 1
of type 2)

Cost 6200 $ 1600 $

Packet-loss 0.9% 2%
Dropped messages% 0.001% 1.7%

percentage and the satisfied computational demand. We apply
our proposed method to the Cairo city scenario and it is eval-
uated against the RSU-opt technique that uses CPLEX as the
optimizer. Our method shows better results in terms of RSU
deployment cost and percentage of dropped messages due
to lack of computational capabilities. Our method generates
multiple alternatives as Pareto front for the end user. Our future
work includes the post-Pareto analysis of the obtained results
as well as studying the impact of the cell size on the output
and how to select its value.
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