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Abstract—This paper studies the physical-layer security (PLS)
of a system model consisting of a transmitter, a receiver, and
multiple eavesdroppers. Cascaded general fading channel, which
is the κ-µ distribution is assumed at the main and the wiretap
links of the network. The impacts of the cascade level, the
number of eavesdroppers attempting to overhear the confidential
information, and the wiretap channel’s parameters on the sys-
tem’s secrecy are investigated. Two of the main secrecy metrics
are used to evaluate the secrecy level of the system, which are
the secrecy outage probability (OPsec) and the probability of
non-zero secrecy capacity (Pnsc). Exact and asymptotic form
expressions for (OPsec) and (Pnsc) are derived. Asymptotic
analysis is performed to gain a clear vision about the impact
of some key parameters over the secrecy. The results show that
the fading channel cascade level has a significant effect on the
system’s secrecy. Also, the results show that the system is less
protected when increasing the number of eavesdroppers or when
improving the wiretap channel’s conditions. Analytical results are
validated using Monte-Carlo simulations.

Index Terms—Cascaded general fading channels, physical-
layer security, probability of non-zero secrecy capacity, secrecy
outage probability.

I. INTRODUCTION

NETWORK security is expected to be an important factor
in the 5G since it is supposed to support a huge number

of connections [1], [2]. Up until now, the methods used
to enhance the secrecy of the networks have been heavily
dependent on the cryptography approach implemented in the
upper layers of the network. However, security methods based
on encryption approaches have several drawbacks especially
for 5G communications. For instance, the added software and
hardware complexity of these approaches to the network since
high processing power is needed [3]. Therefore, physical-
layer security (PLS) has become a very interesting alternative
for investigating and improving the security of the exchange
of confidential information between legitimate ends in 5G
[4]. As PLS does not depend on encryption and decryption
techniques, there is no need for the exchange of security keys.
PLS methods exploits wireless media characteristics between
legitimate ends, such as fading [4]. PLS was first addressed
by Shannon [5] and further explored later by Wyner [6] and
it clearly shows that security of the data is guaranteed if the
channel between legitimate users has better conditions than the
channel exists between the transmitter and the attackers [7].

General fading distributions, such as κ-µ fading have been
verified via field measurement campaigns to better fit the
experimental data compared to other known distributions, such

as Rician and Nakagami-m [8]. κ-µ distribution suits the line-
of-sight (LOS) applications and it is defined by two physical
parameters, which are κ and µ. κ > 0 is defined as the
ratio between the total power of the dominant components
and the power of the scattered waves, while µ > 0 represents
the number of the multipath clusters. κ-µ fading channel is
known for its flexibility as it includes some of the well-known
channels as special cases, such as Rician, Rayleigh, Nakagami-
m, and the one-sided Gaussian distributions [8].

Cascaded fading channels have gained interest as they can be
used to model the channel for various communication systems,
such as mobile-to-mobile (M2M) communications, multi-hop
cooperative communications, and radio frequency identifi-
cation pinhole channels [3]. For example, double Rayleigh
fading channels have been used to model the propagation
through keyhole channels in multiple-input-multiple-output
(MIMO) systems [9], M2M communications and vehicular
communications [10], [11]. Cascaded fading channels exist
when the transmitter and the receiver are in rich scattering
areas. Cascaded fading channels are also called multiplicative
channels as the channel gain at the receiver end is generated
by the multiplication of a high number of rays reflected from
the scatters between the transmitter and the receiver [12].

Recently, PLS has been extensively used with different
fading channel models. In [13] and [14], PLS was studied for
generalised-k and for Weibull fading channels, respectively.
PLS for Rician fading channels was studied in [15]. Lately,
PLS was studied for some systems where cascaded fading
channels are employed. PLS for cascaded Nakagami-m fading
channels was studied in [3] and [16]. Cascaded α-µ fading
channel was used in [10] to study the system’s secrecy. Secrecy
was also investigated for cascaded Rayleigh fading channels
in [17]. PLS was studied over cascaded κ-µ fading channels
over the main link only in [18].

To the best of the authors knowledge, no work has consid-
ered studying PLS for a network where cascaded κ-µ fading
channels are assumed at the main and the wiretap links with
multiple eavesdroppers. Hence, we focus on studying the PLS
for a three-node wiretap system; a transmitter, a receiver
and several colluding eavesdroppers (or a single eavesdropper
with multiple numbers of antennas). Colluding eavesdroppers
each equipped with a single antenna can be replaced by a
single eavesdropper with multiple antennas since colluding
eavesdroppers perform joint processing over the intercepted
information [19]. The eavesdropper receiver is assumed to use

978-1-7281-6535-6/20/$31.00 ©2020 IEEE

ICCSPA20 1570626216

1



maximal-ratio combining (MRC) over the received signals to
enhance the received signal-to-noise-ratio (SNR). The channels
are modeled as cascaded κ-µ fading channels. Two major PLS
metrics are used in this paper, which are the secrecy outage
probability (OPsec) and the probability of non-zero secrecy
capacity (Pnsc). Exact and asymptotic expressions for (OPsec)
and (Pnsc) are derived. The effect of the cascade level of the
channels over these metrics is studied. Moreover, the effect
of the number of eavesdroppers and the wiretap channel’s
conditions over the secrecy of the system are also considered.

The paper is organized as follows; section II represents
the system model and the PLS analysis over the cascaded
κ-µ fading channels. Section III includes the analytical and
simulation results. Conclusions are given in section IV.

II. PHYSICAL-LAYER SECURITY ANALYSIS

In this section, PLS is investigated for a three-node network.
Assume we have a transmitter (Alice) trying to communicate
with a receiver (Bob) over the main channel (the one between
Alice and Bob). Multiple colluding eavesdroppers may be
considered as a single eavesdropper (E) equipped with multi-
antennas. E is trying to overhear the confidential information
sent from Alice through the wiretap channel (the one between
Alice and E). The main and the wiretap channels are assumed
to follow the cascaded κ-µ fading distribution (see Fig. 1). The

Fig. 1. The system model.

received signal at the legitimate receiver (Bob) is given by

ym =
√
PZNx+ wm, (1)

where P is the transmit power. x is the transmitted symbol at
Alice and wm is the AWGN at the receiver with zero mean
and variance N0. ZN is the channel gain for the main link,

which is defined by ZN =
N∏
i=1

Xi. Xi is a set of independent

κ-µ random variables (RVs) with the parameters κi and µi
(i ∈ {1, 2, · · · , N}). Hence, ZN follows cascaded κ−µ fading
with the following probability density function (PDF) [18]

fZN (z) =
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

a1z
2µ1+2v1−1

× G 0 N
N 0

(
ε
−

∣∣∣∣∣ 1

z2
∏N
i=1 µi (1 + κi)

)
, (2)

where Gm n
p q

( ar
bs

∣∣z) is the Meijer G-function defined in [20,
Eq. 9-301], ε = µ1 − µ2 + v1 − v2 + 1, · · · , µ1 − µN + v1 −
vN + 1, 1, and

a1 = 2
N∏
i=1

 [µi (1 + κi)]
µ1−µi+v1−vi µi (1 + κi)

µi+1

2

κ
µi−1

2
i exp (κiµi) Γ (vi + µi)


×

N∏
i=1


[
2µi
√
κi (1 + κi)

]2vi+µi−1

(vi)!22vi+µi−1

 ·

The cumulative distribution function (CDF) of the RV ZN is
given by [18]

FZN (z) =

∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

a1

2
z2(µ1+v1)

×GN 1
1 N+1

(
1−µ1−v1

ρ

∣∣∣∣∣z2
N∏
i=1

µi (1 + κi)

)
, (3)

where ρ = −µ1 + µ2 − v1 + v2, · · · ,−µ1 + µN − v1 +
vN , 0,−µ1 − v1. The intercepted message at E is given by

yE,k =
√
PZE,kx+ wE,k, (4)

where wE,k is the AWGN at the kth antenna of E with
zero mean and variance N0. ZE,k is the channel gain for
the wiretap link, which is the one between Alice and the
kth antenna of E for k = 1, 2, · · · ,K. K is the number
of eavesdroppers (number of antennas at E). ZE,k is defined

by ZE,k =

ne∏
j=1

Y
(k)
j . Y (k)

j is a set of independent κ-µ RVs

with the parameters κ
(k)
ej and µ

(k)
ej (j ∈ {1, 2, · · · , ne}) for

the kth link. Hence, ZE,k follows the cascaded κ− µ fading
distribution with the following PDF

fZE,k(ze) =
∞∑

r
(k)
1 =0

∞∑
r
(k)
2 =0

· · ·
∞∑

r
(k)
ne =0

a
(k)
2 z

2µ
(k)
e1 +2r

(k)
1 −1

e

×G 0 n(k)
e

n(k)
e 0

 β(k)
e
−

∣∣∣∣∣∣∣
1

z2
e

∏n
(k)
e

j=1 µ
(k)
ej

(
1 + κ

(k)
ej

)
 ,

(5)
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where β(k)
e = µ

(k)
e1 −µ

(k)
e2 + r

(k)
1 − r

(k)
2 + 1, · · · , µ(k)

e1 −µ
(k)
ene +

r
(k)
1 − r(k)

ne + 1, 1 and

a
(k)
2 = 2

n(k)
e∏
j=1


[
µ

(k)
ej

(
1 + κ

(k)
ej

)]µ(k)
e1 −µ

(k)
ej +r

(k)
1 −r

(k)
j

µ
(k)
ej

κ
(k)
ej

µ
(k)
ej
−1

2
exp

(
κ

(k)
ej µ

(k)
ej

)
Γ
(
r

(k)
j + µ

(k)
ej

)


×
n(k)
e∏
j=1


[
2µ

(k)
ej

√
κ

(k)
ej

(
1 + κ

(k)
ej

)]2r
(k)
j +µ

(k)
ej −1

(r
(k)
j )!22r

(k)
j +µ

(k)
ej −1


×
n(k)
e∏
j=1

(1 + κ
(k)
ej

)µ(k)ej
+1

2

 ·
The CDF of the RV ZE,k is given by

FZE,k (ze) =
∞∑

r
(k)
1 =0

∞∑
r
(k)
2 =0

· · ·
∞∑

r
(k)
ne =0

a
(k)
2

2
z

2
(
µ
(k)
e1 +r

(k)
1

)
e

×G n(k)
e 1

1 n(k)
e +1

 1−µ(k)
e1 −r

(k)
1

s(k)

∣∣∣∣∣∣z2
e

n(k)
e∏
j=1

µ
(k)
ej

(
1 + κ

(k)
ej

) ,

(6)

where s(k) = −µ(k)
e1 +µ

(k)
e2 − r

(k)
1 + r

(k)
2 , · · · ,−µ(k)

e1 +µ
(k)
ene −

r
(k)
1 + r

(k)
ne , 0,−µe1− r

(k)
1 . The SNR at Bob is given by γB =

|ZN |2 P
N◦

with the following PDF and CDF

fγB (γ) =
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

a1

2

(∏N
i=1E

[
X2
i

]
γ̄B

)µ1+v1

×G 0 N
N 0

(
ε
−

∣∣∣∣∣ γ̄B

γ
∏N
i=1E [X2

i ]µi (1 + κi)

)
×γµ1+v1−1, (7)

FγB (γ) =
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

a1

2

(
γ

∏N
i=1E

[
X2
i

]
γ̄B

)µ1+v1

×GN 1
1 N+1

(
1−µ1−v1

ρ

∣∣∣∣∣γ
∏N
i=1E

[
X2
i

]
µi (1 + κi)

γ̄B

)
,

(8)

where γ̄B is the average received SNR at Bob. The eaves-
dropper (E) employs MRC over the received signals. Hence,
the received SNR at E is given by γE =

∑K
i=1 γE,i =∑K

i=1 |ZE,i|
2 P
N0

. Using [21] and (5), the PDF of γE is given
by

fγE (γe) =
∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cx,e
2

(∏ne
j=1E

[
X2
j

]
γ̄EK

)µe1K+r1

×G 0 ne
ne 0

(
β′e
−

∣∣∣∣∣ γ̄EK

γe
∏ne
j=1E

[
X2
j

]
µejKj (1 + κej)

)
×γµe1K+r1−1

e , (9)

where γ̄E is the average received SNR at E, β′e = µe1K −
µe2K+r1−r2 +1, · · · , µe1K−µeneK+r1−rne+1, 1, and

cx,e =2

ne∏
j=1


[
2µejKj

√
κej (1 + κej)

]2rj+µejKj−1

(rj)!22rj+µejKj−1


×

ne∏
j=1

 [µejKj (1 + κej)]
µe1K−µejKj+r1−rj

κ
µejKj−1

2
ej exp (κejµejKj)


×

ne∏
j=1

µejKj (1 + κej)
µejKj+1

2

Γ (rj + µejKj)

 ·
To prove the accuracy of (9), the pdf is plotted along with
Monte-Carlo simulation in Fig. 2. Using (9) and [22, Eq. (26)],
the CDF of γE can be given by

FγE (γe) =
∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cx,e
2
G ne 1

1 ne+1

(
ε′

η′e

∣∣∣∣ Aγeγ̄EK

)

×

(
γe

∏ne
j=1E

[
X2
j

]
γ̄EK

)µe1K+r1

, (10)

where ε′ = 1 − µe1K − r1, η′e = −µe1K + µe2K − r1 +
r2, · · · ,−µe1K+µe′neK−r1 +rne , 0,−µe1K−r1, and A =∏ne
j=1E

[
X2
j

]
µejKj (1 + κej).

A. Secrecy Outage Probability

In this section, the secrecy outage probability (OPsec),
which is an important secrecy measurement metric for pas-
sive eavesdropping is studied. The secrecy capacity can be
expressed as

Cs =

{
Cm − Ce, if γB > γE

0, if γB ≤ γE
, (11)

where Cm and Ce are the capacities of the main and the
wiretap channels, respectively. OPsec is expressed as

OPsec = Pr (Cs < Cth)

=

∫ ∞
0

fγE (γe)FγB
(
2Cth (1 + γe)− 1

)
dγe, (12)

 γ
e
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(γ
e
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ne = 3,K = 1, γ̄E = 1dB
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ne = 2,K = 2, γ̄E = 10dB

ne = 2,K = 2, γ̄E = 1dB

Fig. 2. The PDF of the received SNR at the eavesdropper (γE) for multiple
values of cascade level of the wiretap channel (ne) and multiple number of
antennas at E (K). κe = 1 and µe = 2.
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where Cth is a predefined secrecy rate. A lower bound for
OPsec can be found instead (OPLsec). This is because further
calculations for the OPsec with the presence of the argument
of the CDF in (12) is complicated. OPLsec is given by [23]

OPLsec =

∫ ∞
0

fγE (γe)FγB
(
2Cthγe

)
dγe· (13)

Using (8) and (9) and with the help of [24, Eq. (2.3.31)] and
[20, Eq. (7.813-1)] yields

OPLsec =
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

ca

×G N ne+1
ne+1 N+1

(
ξ
ρ

∣∣D) , (14)

where ξ = 1− µ1 − v1, 1− µ1 − v1 − µe2K − r2, · · · ,
1− µ1 − v1 − µeneK − rne , 1− µe1K − r1 − µ1 − v1,

D =
2Cth γ̄EK

∏N
i=1 E[X2

i ]µi(1+κi)

γ̄B
∏ne
j=1 E[X2

j ]µejKj(1+κej)
, and

ca =
a1cx,e

4
2Cth(µ1+v1)

(∏N
i=1E

[
X2
i

]
γ̄B

)µ1+v1

×

(∏ne
j=1E[X2

j ]µejK (1 + κej)

γ̄EK

)−µe1K−r1−µ1−v1

×

(∏ne
j=1E[X2

j ]

γ̄EK

)µe1K+r1

·

B. Asymptotic Secrecy Outage Probability

In this section, the asymptotic OPLsec is evaluated when
γ̄E → ∞. Rewriting (14) with the help of [25, Eq. (2.2.1)]
and [25, Eq. (3.11.3)] yields

OPLsec =
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cacb

×H N ne+1
ne+1 N+1 ( εdηd |D) , (15)

where H m n
p q ( ab |·) is the H-function

defined in [25, Eq. 3.11.1], εd =
{1, 1} , {1− µe2K − r2, 1} , · · · , {1− µeneK − rne , 1} ,
{1− µe1K − r1, 1} , ηd = {µ2 + v2, 1} , · · · , {µN + vN , 1} ,
{µ1 + v1, 1} , {0, 1} , and

cb =

(
γ̄B
∏ne
j=1 E[X2

j ]µejKj(1+κej)

2CthK
∏N
i=1 E[X2

i ]µi(1+κi)

)µ1+v1

· Furthermore,

the H-function can be rewritten again using its integral
representation. Hence, (15) can be given by

OPLsec =
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cacb
2πi

×
∫
C

Γ[s]
∏N
i=1 Γ[µi + vi − s]

Γ[1 + s]

ne∏
j=1

Γ[µejK + rj + s]Dsds·

(16)

To find the asymptotic expression for OPLsec, the residue
method can be used [26]. Hence, as γ̄E → ∞, D → ∞ and
the asymptotic expression of OPLsec can be expressed as

OPLsec ≈
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cacb
2πi

×Res {g(s), 0}

≈
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cacb

×
N∏
i=1

Γ[µi + vi]

ne∏
j=1

Γ[µejK + rj ], (17)

where g(s) is given by

g(s) = Ds
Γ[s]

∏N
i=1 Γ[µi + vi − s]

∏ne
j=1 Γ[µejK + rj + s]

Γ[1 + s]
·

One can notice from (17) that the diversity order is zero, which
means that the secrecy cannot be achieved at all when the
wiretap channel’s conditions are highly improved (γ̄E → ∞)
and E will be able to overhear the confidential information.

C. Probability of Non-zero Secrecy Capacity

Another secrecy metric commonly used is the probability of
non-zero secrecy capacity, which can be expressed as

Pnsc = Pr (Cs > 0) = Pr (γB > γE) = F γE
γB

(1) · (18)

To find the probability of non-zero secrecy capacity, some
mathematical manipulations are needed to be performed over
equations (7) and (9) as

fγB (γ) =
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

a1

∏N
i=1E

[
X2
i

]
2γ̄B

(∏N
i=1 µi (1 + κi)

)µ1+v1−1

×H N 0
0 N

(
−
λ

∣∣∣∣∣γ
∏N
i=1E

[
X2
i

]
µi (1 + κi)

γ̄B

)
, (19)

where λ = {µ2 + v2 − 1, 1} , · · · , {µN + vN − 1, 1} ,
{µ1 + v1 − 1, 1}, and

fγE (γe) =
∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cx,e
∏ne
j=1E[X2

j ]

2γ̄EK

× 1(∏ne
j=1 µejKj (1 + κej)

)µe1K+r1−1

×H ne 0
0 ne

(
−
P

∣∣∣∣∣γe
∏ne
j=1E[X2

j ]µejKj (1 + κej)

γ̄EK

)
,

(20)
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where P = {µe2K + r2 − 1, 1} , · · · , {µeneK + rne − 1, 1} ,
{µe1K + r1 − 1, 1}. Using (19) and (20), f γE

γB

(γ) can be
expressed as

f γE
γB

(y) =
∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

cx,ea1

×
∏ne
j=1E[X2

j ]

2γ̄EK
(∏ne

j=1 µejKj (1 + κej)
)µe1K+r1−1

× γ̄B

2
∏N
i=1E[X2

i ]
(∏N

i=1 µi (1 + κi)
)µ1+v1+1

×H ne N
N ne

(
δ
P

∣∣∣∣∣ γ̄B
∏ne
j=1E[X2

j ]µejKj (1 + κej)

γ̄EK
∏N
i=1E [X2

i ]µi (1 + κi)
y

)
,

(21)

where δ = {−µ2 − v2, 1} , · · · , {−µN − vN , 1} ,
{−µ1 − v1, 1}. Using (21) and [27], Pnsc can be found as

Pnsc = 1−
∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

cx,ea1

×
∏ne
j=1E[X2

j ]

4
∏N
i=1E[X2

i ]
(∏ne

j=1 µejKj (1 + κej)
)µe1K+r1

× 1(∏N
i=1 µi (1 + κi)

)µ1+v1

×H ne+1 N
N+1 ne+1

(
ψ
ψ′

∣∣∣∣∣ γ̄B
∏ne
j=1E[X2

j ]µejKj (1 + κej)

γ̄EK
∏N
i=1E [X2

i ]µi (1 + κi)

)
,

(22)

where ψ = {−µ2 − v2 + 1, 1} , · · · , {−µN − vN + 1, 1} ,
{−µ1 − v1 + 1, 1} , {1, 1} and ψ′ =
{0, 1} , {µe2K + r2, 1} , · · · , {µeneK + rne , 1} ,
{µe1K + r1, 1}.

D. Asymptotic Probability of Non-Zero Secrecy Capacity

The asymptotic Pnsc is evaluated when γ̄E → ∞ to
notice the effect of improving the wiretap channel’s conditions
over the secrecy. Following the same procedure utilized to
find the asymptotic secrecy outage probability, the asymptotic
probability of non-zero secrecy capacity can be expressed as

Pnsc ≈ 1−
∞∑
v1=0

∞∑
v2=0

· · ·
∞∑

vN=0

∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rne=0

cx,ea1cc

×
N∏
i=1

Γ[µi + vi]

ne∏
j=1

Γ[µejK + rj ], (23)

where cc =
∏ne
j=1 E[X2

j ]

4
∏N
i=1 E[X2

i ](
∏ne
j=1 µejKj(1+κej))

µe1K+r1

× 1

(
∏N
i=1 µi(1+κi))

µ1+v1
·

Equation (23) proves that no secrecy can be achieved when
the average received SNR at E is very high and the wiretap
channel’s conditions are extremely good in terms of the aver-
age received SNR. This is possible if the eavesdropper is very

close to the transmitter, which makes the eavesdropper strongly
capable of successfully decoding the intercepted information.

III. NUMERICAL RESULTS

In this section, results for the derived equations are presented
along with the simulation. The analytical curves are plotted by
truncating the infinite series expansion indices (v and r) to the
first 20 terms. A perfect match of the simulation results with
the analytical ones can be observed.

Fig. 3 shows the effect of the cascaded level for the main
and the wiretap channels (N and ne) over the secrecy
outage probability (OPLsec). The channels fading parameters
are: κ = 0 and µ = 1, which represents the Rayleigh
channel as a special case. Other channels can be obtained
by varying the values of κ and µ. The significant impact
over the secrecy of the transmitted information can be noted
by varying the cascade level (number of keyholes) as more
severe fading appears when the number of scatters increases.
Moreover, the effect of changing the value of the average
received SNR at the eavesdropper (γ̄E) over the security is
presented. By improving the eavesdropper’s channel, better
signal reception at E can be achieved, which degrades the
secrecy of the system as the eavesdropper becomes capable
of decoding the information correctly. Improving the wiretap
channel may occur when the eavesdropper is getting closer
to the transmitter. In addition, the asymptotic secrecy outage
probability can be observed from the figure when the value
of γ̄E is very high. That is a zero slope (zero diversity order)
can be seen and a value of 1 can be achieved for the secrecy
outage probability. Hence, the secrecy of this system with such
parameters cannot be achieved regardless of the value of the
average received SNR at Bob (γ̄B) and the information will be
intercepted by the eavesdropper. Furthermore, increasing the
average received SNR at Bob (γ̄B) helps to reduce the secrecy
outage probability regardless of the change in the cascade
level.
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Fig. 3. The lower bound of the secrecy outage probability (OPL
sec) for two

antennas at the eavesdropper (K = 2). For the main channel: κ = 0, µ = 1
and for the wiretap channel: κe = 0, µe = 1 (Rayleigh). Cth = 1 and
γ̄E = 1 dB.

Fig. 4 reveals the effect of changing the number of antennas
of the eavesdropper (E) over the secrecy. It can be noticed that
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Fig. 4. The probability of non-zero secrecy capacity (Pnsc) for different
number of antennas at the eavesdropper (K). For the main channel: κ =
1, µ = 2 and for the wiretap channel: κe = 1, µe = 2. γ̄E = 10 dB.

increasing the number of antennas at E increases the chance
for E to successfully intercepts and decodes the confidential
information between Alice and Bob. That is the eavesdropper
becomes more powerful with increasing the number of anten-
nas as the receiver employs the MRC technique. Furthermore,
increasing the average received SNR at Bob (γ̄B) helps to
reduce the effect of increasing the number of passive eaves-
droppers (K) and increases the chance to achieve a positive
secrecy capacity. In addition, the effect of the average received
SNR at E (γ̄E) over the probability of non-zero secrecy
capacity is studied. Higher values for γ̄E implies better channel
conditions in the wiretap link and degradation in the security.
Improving the wiretap channel’s conditions in terms of the
average received SNR (γ̄E) will eventually cause a very low
value for the probability of non-zero secrecy capacity, which
represents the asymptotic situation. That is the information
will be intercepted by the eavesdropper easily and decoded
successfully.

IV. CONCLUSION

In this paper, we studied the secrecy of a system model
consisting of a transmitter, a receiver, and a multi-antenna
eavesdropper trying to intercept the confidential information
sent to the legitimate receiver. The main and wiretap links
fading distributions are assumed to be cascaded κ-µ. Exact and
asymptotic expressions for two of the main secrecy metrics
formulas were derived, which are the secrecy outage prob-
ability and the probability of non-zero secrecy capacity. The
results show that the cascade level (number of scatters) at both
links have a noticeable effect over the secrecy performance.
Moreover, a clear degradation in the secrecy can be observed
for an increase in the number of antennas at E or in the value
of the average received SNR at E. Analytical results were
successfully verified by Monte-Carlo simulation.
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