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Abstract— Text-to-speech (TTS) synthesis is a rapidly 
growing field of research. Deep learning has shown 
impressive results in speech synthesis and outperformed the 
older concatenative and parametric methods. In this paper, 
speech synthesis using deep learning architectures is 
explored and two models are utilized in an end-to-end 
Arabic TTS system. The results of the two systems are 
compared to concatenative TTS system using the Mean 
Opinion Score (MOS) of the synthesized speech and 
indicates that deep learning based systems have 
outperformed the concatenative system when it comes to 
naturalness and intelligibility; moreover, it reduces system 
complexity.

Keywords—text-to-speech, deep learning, recurrent 
architecture, speech processing

I. INTRODUCTION 
There is currently a lot of research carried out in 

the area of text-to-speech synthesis. This work builds 
upon the state-of-the-art in neural speech synthesis and 
attention-based sequence to-sequence learning. In [1], 
Wang et al., present Tacotron, an end-to-end generative 
text-to-speech model based on the sequence-to-sequence 
(seq2seq) model [2] that takes characters as input and 
outputs raw spectrogram and synthesizes speech directly 
from spectrogram using Griffin-Lim method [3] as the 
synthesizer. Given <text, audio> pairs, the model can be 
trained completely from scratch with random 
initialization. Tacotron achieves a 3.82 subjective 5-scale 
mean opinion score on US English, outperforming a 
production parametric system in terms of naturalness. In 
[4], van den Oord et.al, presents WaveNet a generative 
model for generating raw audio waveforms based on the 
Pixel Convolutional Neural Network PixelCNN 
architecture [5]. The proposed model is fully 
probabilistic and autoregressive; it requires conditioning 
on linguistic features from an existing TTS system so is 
not fully end-to-end but it is capable of producing audio 
that is very similar to a human voice. In [6], Sotelo .et.al, 
preset Char2Wav, an end-to-end model for speech 
synthesis which can be trained on characters. Char2Wav 
has two components that needed to be separately pre-
trained: the first component is a model based on encoder-
decoder model with attention. The encoder is a seq2seq 
network that accepts text or phonemes as inputs, while 
the decoder is a recurrent neural network with attention 
that produces vocoder acoustic features. The second 
component is a vocoder which generates raw waveform 
from acoustic features using a Sample RNN neural 
vocoder [7]. In [8], O. Arik et.al, presents Deep Voice as 

a text-to-speech system developed using deep neural 
networks. 
Deep Voice lays the groundwork for truly end-to-end 
neural speech synthesis. The system comprises five major 
building blocks based on deep neural networks: a 
segmentation model for locating phoneme boundaries, a 
grapheme-to phoneme conversion model, a phoneme 
duration prediction model, a fundamental frequency 
prediction model, and an audio synthesis model. In [9], 
Skerry-Ryan et.al, present a speech synthesis architecture 
based on Tactron [1] and Wavenet [4]. The system is 
composed of a recurrent sequence-to-sequence feature 
prediction network that maps character embedding to 
mel-scale spectrograms, followed by a modified 
WaveNet model acting as a vocoder to synthesize time 
domain waveforms from those spectrograms. The nearly 
fully end-to-end TTS model in previous work is Tacotron 
introduced models and it also has the significant 
advantage of being frame-level and thus highly efficient.
 For these reasons we utilized these two models and 
compared them to create the proposed Arabic TTS 
systems. The rest of the paper is organized as follows. 
Section II introduces the proposed model along with the 
needed data preprocessing and method of synthesis. 
Experimental results and analysis are presented in Section 
III and finally the paper is concluded in Section IV. 

II. PROPOSED TTS ARCHITECTURE
The goal of this work is to build an end-to-end TTS 

system for Arabic which can generate natural speech. We 
present an end-to-end TTS system that learns to 
synthesize speech directly from (text, audio) pairs based 
on Google’s Tacotron. Given <text, audio> pairs, end-to-
end TTS systems can be trained using <text, audio> 
which reduces system complexity and keeps output good 
quality. Initial results show that an end-to-end platform 
can provide better results since intonation of the input 
phonemes are kept in the model to carry the prosodic 
features to generate the required contour. Thus, the end-
to-end approach was adopted instead of the engineering-
based Hidden Markov Model (HMM) original 
formulation. We created Arabic ‘NUN’ dataset to train a 
voice with reasonable naturalness.
The pipeline of the proposed system is depicted in Fig. 1 
where the undiacritized Arabic text (input) is vowelized 
by Natural Language Processing NLP components, then 
the corresponding phonetic transcription is generated by 
the phonetizer. Afterwards the speech synthesizer based 
on Deep learning and signal processing techniques 
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produces the equivalent raw spectrogram. Finally, 
Tacotron generates the synthesized wave (output). 

Fig. 1: Pipeline of Arabic TTS components

A. Data preprocessing 
1) Diactrization: Arabic NLP is at least one order 

of magnitude higher than English and is a must in 
learning and understanding Arabic for many reasons. 
Complexity of Arabic NLP is clear on multiple levels:
On word level, with high affixation, where one word in 
Arabic can be translated into an entire English sentence 
such as:

They will teach 
both of you

سیعلمونكما س + یعلم + ون + كما

With the Lack of diacritics and without vowels, one can 
get up to 10 alternatives:

م ل ك <-- ْمَلِك King

ْمَلَك Angel

ْمُلْك Throne

َمَلَّك Granted

ْمِلْك Possession

َمُلِّك Was granted

On the sentence level, in the below sentence, there are 40 
alternatives that need a powerful diacritizer to process 
huge probable alternatives due to morphological [10], 
Lexical, Syntactic etc... ambiguities:

The man ate the carrots
أَكَلَ الْرَجُلُ الْجَزَرَ

الجزر الرجل أكل

الجَزَر

الجُزُر
الجَزْر

The 

carrots
The 

Islands
The 
Ebb

الرَجُل

الرِجْل

The 

man
The 
leg

َأَكَل

ْأَكِّـل
َأُكِل
َأَكَّل
أُكُل
أَكْل

Ate

Feed
Bored
Fed
Are 
all

Food

There are several tools and in this paper we utilize Farasa 
Diactrization API [11] in our proposed system.

2) Phonetization: Text phonetizer is a critical 
component in any NLP domain that envisages real system 
TTS conversion.
Converting from written text into actual sounds is marked 
by several problems. For Modern Standard Arabic 
(MSA), these problems are not as severe as they are for 
English. 
However, due to co-articulations, sounds in Arabic can 
have enormous contextual variability. This requires that a 
set of rules have to be developed to cover these phonetic 
variations [12].

Table 1: The Speech Assessment Methods Phonetic 
Alphabet (SAMPA) for Arabic

Table 2: Standard Arabic vowel system

Tongue 
position/height

Front Central Back

High or closed /i/ /i:/ 
(Unrounded)

Low or open /a/ /a:/ 
(Unrounded)

High or closed /u/ /u:/ 
(Rounde
d)

In this paper, we utilize a graphemes-to-phonemes 
converter based on SAMPA as in Table 1. We convert 
Arabic diacritised text to a sequence of phonemes 
according to the Standard Arabic vowel system in Table 2 
and create a pronunciation dictionary from them for 
alignment using Hidden Markov Model Toolkit (HTK). 

B. Speech Synthesis
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Synthesized speech is the ultimate production of a TTS 
system. We previously used the concatenative model but 
multiple phases in this well-known and traditional 
approach propagate any error. In this approach, the basic 
procedures involved in training a set of subword models 
to generate a prosody model, is based on HMM. As 
illustrated in Fig. 2, the core process involves the 
embedded training tool HEREST from HTK.
HEREST uses manually segmented utterances as its 
source of training data and simultaneously re-estimates 
the complete set of subword HMMs. For each input 
utterance, HEREST needs a transcription, i.e. a list of the 
phones in that utterance. HEREST then joins all of the 
sub word HMMs corresponding to this phone list to make 
a single composite HMM [13] that is used to collect the 
necessary statistics for the re-estimation. When all of the 
training utterances have been processed, the total set of 
accumulated statistics are used to re-estimate the 
parameters of the entire phone HMMs [14]. It is 
important to emphasize that in this process, no phone 
boundary information is needed [15] as the transcriptions 
identify phones sequence in each utterance

Fig. 2 – HMM based prosodic model [11]

One of the major problems found in building any HMM-
based system is that the amount of training data for each 
model will be variable and is rarely sufficient.
The initialization of a set of phone HMMs prior to 
embedded re-estimation using HEREST can be achieved 
by a small set of hand-labelled bootstrap training data to 
initialize each phone HMM individually [16]. When used 
in this way, HEREST uses the label information to 
extract all the segments of speech corresponding to the 
current phone HMM in order to extract best intonation 
parameters.
Thus, HMM model quality saturates after a few hours of 
training data and the resulting outcome of the prosodic 
model, in spite of being satisfactory, can still be 

distinguished from human beings. On the other hand, 
speech synthesis based on Deep learning enhances the 
quality in a proportional way with the amount of training 
data. Thus, the merging of both RNN and Long short-
term memory (LSTM), produced a quasi-human prosody 
[17].

Fig. 3–RNN [22]

As depicted in Fig. 3, RNN connections are between 
nodes and form a directed graph along a sequence and 
thus can use their internal state (memory) to process 
sequences of inputs [18].

 Fig. 4 –LSTM [22]

LSTM blocks are actually building units for RNN layers. 
It is composed of a cell, an input, an output and forget 
gates, as shown in Fig. 4. The cell is responsible for 
"remembering" values over arbitrary time intervals; the 
word "memory" in LSTM is because the cell is 
responsible for "remembering" values over time intervals 
[19].
A Deep learning architecture was selected after applying 
a similar one for acoustic modeling in speech recognition 
[20]. This is a replacement of the HMM generation 
module [21] in the concatenative speech synthesis and 
will provide, as will be shown below, much better results 
due to “memory” concept in both RNN and LSTM [22]. 
Thus, in the new end-to-end approach, our model takes 
characters as input and outputs raw spectrogram. 
In this paper, to synthesize speech, we have utilized 
RNN-based Seq2Seq model for generating mel 
spectrogram from text. The architecture is similar to 
Tacotron 2 [5].
The generated mel spectrogram can either be inverted via 
iterative algorithms such as Griffin Lim, or through more 
complicated neural vocoder networks such as a mel 
spectrogram conditioned Wavenet [2,4]- 
WaveNets are a high-quality approach to a” neural 
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backend”. We investigated in this research Tactron and 
Tactron2 and evaluated them.
In this paper, we implement two modified versions 
of Tacotron 2 and Tacotron architecture to work with the 
Arabic language. Tacotron 2 is a modified version of 
Tacotron where the simpler Griffin-lim algorithm is 
replaced by WaveNet vocoder. Tactron Model is 
illustrated in Fig. 5, and the modified model Tactron2 is 
shown in Fig. 6. Before training, the Arabic data is 
preprocessed as described in the previous sections then 
the input text enters the model and the characters are 
converted into a 512-dimensional character embedding 
and target spectrograms are computed from the 
waveforms in the dataset through a short-time Fourier 
transform (STFT). Spectrograms are also put through a 
pre-emphasis filter in order to reduce high frequency 
noise. This filtering turned out to significantly improve 
the subjective audio quality of waveforms re-synthesized 
with the synthesizer. The biggest difference is that during 
waveform generating Tactron is using Grifflim algorithm 
while Tactron2 is employing WaveNet model for speech 
synthesis. 

Fig 5. Tacotron model architecture. The model takes 

characters as input and outputs the corresponding raw 
spectrogram, which is then fed to the Griffin-Lim 
reconstruction algorithm to synthesize speech. [1]

Fig. 6. Tactron2 Model architecture. The model takes 

characters as input and outputs the corresponding raw 
spectrogram, which is then fed to WaveNet Model to 
synthesize speech. [23]

III. EXPERIMENTAL RESULTS AND ANALYSIS 

NUN Dataset:

Synthesizing natural speech requires training on a large 
number of high-quality speech-transcript pairs, thus we 
recorded NUN Arabic dataset. The NUN Corpus is 
designed to provide speech data for text to speech. The 
NUN Corpus contains 4.5 hours of high-quality 
recordings of only one speaker. Speaker is reading About 
5000 phonetically rich sentences covering all Arabic 
phones and DiPhones. The NUN corpus includes 
sentences as well as a 16-bit, 48kHz speech waveform 
file for each sentence. Corpus design was a joint effort 
among engineers and computational linguists.

Training Setup:
In the case of Tactron, the model is trained for 1000k 
steps with batch size 32 on a single GPU. We use the 
Adam optimizer [24] with values β1 = 0:9; β2 = 0:999 
and learning rate to 0.001 in Tacotron and Tacotron 2. 
Seven test sentences are synthesized using saved models 
from several points in training history to select best 
performance checkpoint on both naturalness and 
intelligibility. 
In case of Tactron 2, the model is trained into two 
separate steps: first training the feature prediction 
network on its own for 1000k steps with batch size 32 on 
a single GPU, followed by training a WaveNet 
independently on the outputs generated by the first 
network for 1.9M steps with batch size 8. Figures 7 and 8 
illustrate the loss curve when training Tactron and 
Tacotron 2 models on our Arabic dataset.

Fig. 7. Tacotron 1 Training loss

Fig. 8. Tacotron 2 Training loss

Analysis:
The quality of the synthesized speech is evaluated 
through a subjective test. We randomly selected 20 fixed 
examples from the test set of our internal dataset as the 
evaluation set.

Audio generated from Tacotron and Tacotron 2 on this 
set where each sample is rated by at least 8 raters on a 
scale from 1 to 5 with 0.5 point increments, from which a 
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subjective MOS is calculated. Each evaluation is 
conducted independently from each other, so the outputs 
of two different models are not directly compared when 
raters assign a score to them. The two systems are built 
on the same dataset which should minimize the risk for 
biases towards certain types of voices. 
To evaluate both models against Concatenative HMM, 
we used MOS like typical TTS system evaluations. To 
get this score, samples of a TTS output are given to 
native-speakers and rated on a score from 1 (Bad) to 5 
(Excellent) according to speech main criteria’s: 
Intelligibility, Naturalness, Pleasance, Smoothness and 
Prosody. The subjects were asked to rate the output and 
the MOS is then computed as the arithmetic mean of 
these scores:

Where R are human ratings for a TTS sample by N 
people.
For the 3 TTS models we collected and generated MOS 
score from 50 people with a normal distribution of age, 
gender and education to represent a neutral sample of 
Arabic audience.
The subjective listening tests were blind: 10 sentences 
not included in the training data were used for the 50 
testers with Concatenative, Tacotron 1 and Tacotron 2, 
respectively i.e., speech samples have the same text 
synthesized by the different models. As shown in Table 
3, Tacotron 2 achieves an MOS of 4.38, while Tacotron 1 
gives 4.01 which outperforms the concatenative system 
3.89 and represents promising results.

Table 3: MOS results 

Arabic TTS model MOS

Concatenative with HMM 3.89

Tacotron 1 4.01

Tacotron 2 4.38

IV. CONCLUSION
In this paper, we presented a Text to Speech using Deep 
Learning latest techniques for generation of MSA text. 
Our experimental results showed the efficacy of the 
proposed method, in comparison to a conventional 
concatenative HMM-based approach concerning the 
output quality. Future work will include the use of 
sophisticated optimization approaches, to improve the 
synthesis generation time. 
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