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Abstract—A study is conducted to investigate the use of a
parametric intensity model for the process of image classification
in biomedical microwave tomography (MWT). This process
allows for extracting structural information about an object-of-
interest (OI), which can be incorporated as prior information in
an inversion algorithm. The parametric intensity model is based
on a supervised Gaussian probabilistic model. The generated
intensity model is used to classify three cross-sectional MWT
images of human lower leg models. The classification is based on
a Bayesian decision classifier. The resulting segments are used to
extract structural information about the legs’ contour.

Index Terms—microwave tomography, parametric intensity
model, Gaussian probability, Bayesian decision classifier, finite-
element method, contrast source inversion.

I. INTRODUCTION

Microwave Tomography (MWT) has been emerging as a
promising imaging modality for biomedical applications. It
got several advantages over other imaging modalities such as
utilizing safe low-power non-ionizing electromagnetic (EM)
radiation, being user-friendly, and having a low overall equip-
ment cost.

In biomedical MWT, a human organ, which is the object-of-
interest (OI), is interrogated with EM waves from surrounding
transmitting antennas. Based on the tissue layers within the
OI as well as the coupling medium surrounding it, electric
fields with varying strength are scattered. These fields are
measured at several receivers around the OI and are utilized
as inputs for an inversion algorithm. The algorithm outputs
images that estimates the bulk electrical properties within the
human organ. These properties are the relative permittivity and
the effective conductivity [1].

The enhancement of the reconstructed images quality has
been a wide interest for researchers in this field. An effective
method to improve these image is by incorporating prior
information about the OI within the inversion algorithm. Such
prior information include the outermost contour of the human
organ and/or the location and properties of bulk tissues within
the organ like fat, skin, and muscle tissues. To include this
information, they need to be extracted first. This has been
done via using virtual antennas [2], by incorporating other
imaging modalities such as ultrasound [3], or manually from
blind reconstructions [4]; blind reconstructions are the output
images of an inversion algorithm if no prior information is
provided.

In this paper, a method to estimate the prior information
of the OI using a parametric intensity model is presented.

Using the proposed technique, blind reconstructions are clas-
sified using the generated intensity model to extract struc-
tural information about different tissues within the OI. Then,
the extracted information are to estimate the OI’s outermost
boundary, which can be used as prior information in the
reconstruction process.

II. FORWARD AND INVERSE SIMULATIONS

Synthetic numerical data need to be generated using a
forward solver to test the techniques presented in this paper.
The solver utilized herein is an in-house two-dimensional (2D)
finite-element method (FEM) algorithm [5].

Further, a 2D model of a human leg is created using a
Magnetic Resonance Imaging (MRI) cross-sectional image
shown in Fig. 1(a) [6]. The MRI image is imported to
MATLAB, where the points corresponding to each tissue layer
(skin, fat, muscle, and bones) are extracted and exported to
GMSH [7]. GMSH uses the extracted points to create a 2D
FE mesh shown in Fig. 1(b).

Next, several parameters are selected for the forward solver:
(i) 0.8 GHz operating frequency, (ii) twenty-four transmitters
and receivers co-located and distributed equally on a circle
of radius 15 cm surrounding the OI, and (iii) 80:20 glyc-
erin/water coupling matching medium with a relative complex
permittivity of 26− j18 [8]. In regard to the relative complex
permittivity values for different tissues in the model, they are:
42− j18.8 for skin, 11− j2.3 for fat, 55− j20.5 for muscle
and 13− j3 for bones.

The generated synthetic data are inverted using
multiplicatively-regularized finite-element contrast source
inversion (MR-FEMCSI) technique [5]. For the inversion
algorithm, the imaging domain is a circular region of radius
14 cm. The reconstruction of the OI’s relative permittivity

(a) MRI Image (b) FE Model (c) Reconstruction

Fig. 1. The forward model and inversion algorithm reconstruction: (a) MRI
image [6], (b) 2D FE model, (c) relative permittivity reconstruction
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(a) Blind Reconstruction (b) Fat Tissue (c) Muscle Tissue (d) Matching Medium

Fig. 2. The bulk tissue regions extracted from the blind relative permittivity reconstructions: (a) blind reconstruction, (b) extracted fat tissue, (c) extracted
muscle tissue, (d) extracted coupling medium.

is shown in Fig. 1(c). Further details about the forward and
inversion simulations can be found in [9], [10].

III. PARAMETRIC INTENSITY MODEL

Prior structural information about the OI are extracted by
generating a parametric intensity model for the blind relative
permittivity reconstruction. The objective of generating this
model is to assist in describing bulk objects in images.

A parametric intensity model can be expressed as a Gaus-
sian, exponential, or Bernoulli probabilistic models [11]. In
this paper, the selected model is the supervised Gaussian
model, whose probability density function is given as,

p(q|k) = 1√
2πσ2

k

e
− (q−µk)

2

2σ2
k . (1)

Here p(q|k) is the class-conditional probability density func-
tion or the likelihood function of each data point (or pixel) q
within an image. The data point is sometimes referred to as a
feature, which here is the relative permittivity value (or color
intensity). As for k, it is a bulk region index. Furthermore,
the mean and variance of the values within region k are,
respectively, µk and σ2

k. The model is considered supervised
because training data are used to estimate the probabilities
[11]. In this paper, the training data are the fat, muscle, and
coupling medium regions obtained from the actual MRI-based
FE model.

To calculate the parametric intensity model, the first step
is to convert the reconstructed image from FEM-CSI to a
gray-scaled image, whose range is from 0 to 255 as shown
in Fig. 2(a). Next, the intensity values representing differ-
ent tissues are extracted from the reconstructed blind image
by masking bulk regions obtained from the original MRI-
based FE model to the blind image. The extracted regions
k = {1, 2, 3} are,

1) Low permittivity fat-tissue region (Fig. 2(b)).
2) High permittivity muscle-tissue region (Fig. 2(c)).
3) Glycerin/Water coupling medium region (Fig. 2(d)).
After regions are extracted from the reconstructed image,

the mean and variance for the values within each region are
calculated. Moreover, the mean and variance of the relative
permittivity for each region are given in Table I. In this
table, the values between brackets are the gray-scaled intensity

TABLE I
MEAN AND VARIANCE FOR THE PARAMETRIC INTENSITY MODEL

Region µk σ2
k

Fat-Tissue 13.49 (72.36) 8.72 (46.76)

Muscle-Tissue 20.96 (97.17) 75.58 (350.40)

Coupling Medium 17.62 (81.71) 1.59 (7.38)

values. It should be noted that the bones regions are not
extracted due to their poor reconstruction in terms of shape,
location, and electrical properties.

Next, to generate a complete parametric intensity model for
the three regions, the posterior probability is incorporated.
Based on Bayes formula [12], the posterior probability is
the probability of being in region k given that pixels q are
observed, and this can be calculated as follows,

P (k|q) = p(q|k)P (k)
p(q)

. (2)

Here p(q|k) is given in equation (1), P (k) is the prior prob-
ability, and p(q) is the pixel prior probability that is assumed

Fig. 3. The parametric intensity model for the three bulk regions in the blind
reconstruction of the relative permittivity.
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(a) Fat Segment (b) Muscle Segment (c) Medium Segment

(d) Fat Segment (e) Muscle Segment (f) Medium Segment

(g) Fat Segment (h) Muscle Segment (i) Medium Segment

Fig. 4. The Bayesian decision classifier applied on three MRI-based models: (a)-(c) Original Model, (d)-(f) Smaller Model, (g)-(i) Bigger Model.

to be 1 for all pixels. Furthermore, the prior probability, P (k),
is the prior knowledge of how likely a region would appear
within the image. It can be calculated as follows,

P (k) = nk/N. (3)

Here nk is the total number of pixels within extracted region
k, and N is the total number of pixels within the image.

The parametric intensity model for the three regions (fat,
muscle, coupling medium) is shown in Fig. 3, after applying
the described procedure on the blind reconstruction shown in
Fig. 1(c).

IV. BAYESIAN DECISION CLASSIFICATION

After generating the parametric intensity model, it can be
used to classify any blind reconstructed image into three
segments using a Bayesian decision classifier. To elaborate

more, given a pixel q in a reconstructed image, it is classified
within region k, if and only if,

P (k|q) > (P (i|q) & P (j|q)) where {k 6= i 6= j}. (4)

Here {i, j, k} are region indices that can be a value from
{1, 2, 3}.

The result of applying the Bayesian decision classifier
on Fig. 1(c) is shown in Figs. 4 (a)-(c). The figures show
three classified segments from the blind reconstruction, which
represent the three bulk regions in the image: the fat, muscle,
and coupling medium.

For further testing, the same Bayesian classifier is applied to
other blind reconstructions for two MRI-based models, which
are smaller and bigger scaled versions of the original model.
The results are shown in Figs. 4 (d)-(f) and (g)-(i) for the
smaller and bigger models respectively.
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Fig. 5. The original and estimated models of the OI for the three MRI-based
models

In Fig. 4 (a),(d), and (g), the red-dashed line represent the
boundary of the fat layer, which can be used to estimated the
leg’s contour as can be represented in Fig. 5. Furthermore,
the outermost boundaries are estimated by slightly extruding
the fat boundaries to depict the presence of the skin layer.
The L2-norm values for the difference between the actual and
estimated leg boundaries are 5.45%, 6.24%, and 4.89% for the
normal, smaller, and bigger MWT images, respectively. These
boundaries can be incorporated next to an inversion algorithm
for improved reconstruction.

V. CONCLUSION

An investigation on the use of a parametric intensity model
for the purpose of MWT image classification was presented in
this paper. The generated intensity model was used to segment
multiple reconstructed OI images using a Bayesian classifier.
The results show successful extraction of the outermost bound-
ary for three leg models, which can be incorporated as prior
information in an inversion algorithm.
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