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Abstract—Land vehicle positioning relies mostly on Satellite 

navigation systems such as the Global Positioning System 

(GPS). However, GPS signals may be degraded or suffer from a 

blockage in urban canyons and tunnels, and the positioning 

information provided is interrupted. To obtain a continuous 

and reliable positioning solution, GPS is usually augmented 

with inertial sensors using Kalman Filter (KF). However, low-

cost MEMS sensors suffer from complex error characteristics, 

which are difficult to model by the linearized KF models.  

System Identification Techniques can be employed to enhance 

the navigational solution.  This paper reviews two algorithms to 

model and correct the residual and non-linear errors in 

challenging GPS environments using Parallel Cascade 

Identification (PCI), a non-linear system identification 

technique that is cascaded with the Kalman Filter (KF). PCI is 

first employed to model azimuth errors for a loosely coupled 

integration. The experimental results demonstrated that the KF 

performance was significantly improved by augmenting it with 

PCI to model the linear, non-linear, and other residual azimuth 

errors.  Then PCI technique was employed for modeling 

residual pseudorange correlated errors to be used by a KF-

based tightly coupled RISS/GPS navigational solution.  PCI is 

successfully implemented to provide the non-linear model of 

pseudorange errors and augmented with tightly coupled KF to 

provide reliable and accurate positioning solution.   
 

Keywords—  Land Vehicle Navigation, System Identification, 

Inertial Sensors, GPS, Kalman Filter, Parallel Cascade 

Identification 
I. INTRODUCTION 

The field of system identification began by the mid of the 
twentieth century, and it is highly dependent on its purpose 
and application [1,2]. It can be used for control strategies or 
to analyze the properties of a system. System identification is 
utilized in a variety of applications to address the modeling 
problems of dynamic systems. The application of system 
identification technique plays a vital role in deciding that a 
crude model will be enough, or an accurate model is required 
for the system dynamics. It is also possible to model the 
environment of the system to address the application need 
[3,4]. Linear system identification has played a vital role in 
the development of modern design methods [3,4,5]. 

There are several linear system identification methods, 
such as least-squares identification of a parametric model, 
repeated least squares, correlated residuals, the maximum 
likelihood method, Tally principle, and Levin's method. 
System identification requires the following steps  

1. Input/output data measurement with appropriate 
sampling procedures either in the time domain or in the 
frequency domain. 

2. A set of candidate models and to choose a suitable 
model structure. 

3. An estimation method for minimization of fit 
between model (predicted) output and measured output. 

Mathematical representation of a system’s dynamics is 
termed as modeling. Modeling of the dynamical system is 
more challenging as the effects of actions take some time to 
occur. A single system can be described by different models 
depending upon its applications. A black box approach is 
based entirely on observed inputs and outputs of the system, 
as shown in Fig 1. It is widely used for many engineering 
problems. Using this approach, we can decompose a system 
into different modules.  It is very suitable for linear, time-
invariant systems and can also be applied to the non-linear 
systems.  

Dynamical 

System

Input 

Output

 

Fig. 1.  Illustration of the input/output block diagram of a system 

However, linear system identification is not able to address 
many practical time-varying systems, and it becomes 
necessary to use non-linear system identification techniques 
[6,7,8]. The application of non-linear system identification 
techniques is justified when linear models are not able to 
handle the excessive non-linear distortion levels. Non-linear 
system identification techniques include representation of non-
linear systems and estimation of a parametric model. For non-
linear systems identification, the model selection and 
parameter estimation are enormously complicated.  

This paper reviews the utilization of a non-linear system 
identification technique called Parallel cascade identification 
(PCI) to improve the overall navigation solution by modeling 
errors at the sensor and measurement level.    

II. OVERVIEW OF NAVIGATION SYSTEM 

The last two decades have seen an increasing trend in the 
use of Global Navigation Satellite Systems (GNSS) in a 
variety of positioning and navigation applications. These 
systems calculate the receiver position by ranging and other 
information transmitted by visible GNSS satellites using the 
trilateration principle. GNSS applications include but not 
limited to passenger cars, taxis, buses, ambulances, police 
cars, farming vehicles, fire trucks, and mobile robots [9]. 
Current navigational systems match the position on the digital 
map with the help of information from GNSS. Therefore, 
these navigational systems not only identify the current 
location of a vehicle but also provide route guidance to reach 
from one location to another. Improved digital maps assist in 
the enhancement of the navigational systems [9, 10]. 
Intelligent transport system (ITS) focused on bringing features 
like collision warning and mitigation, lane-keeping, lane-
changing with route guidance to the desired destination, traffic 
flow guidance, and vulnerable road user detection, driver 
condition monitoring, and improved vision. These features 
need navigation systems with higher accuracy, better 
reliability, availability, and continuity of service [11].  

Although the solution provided by GNSS is sufficiently 
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accurate (especially when used in differential mode), it is not 
able to accomplish the requirements of continuity, reliability, 
and availability. GNSS may suffer from outages, 
interference, jamming, and multipath effects in urban 
canyons, and rural foliage canopies, as shown in Fig 2. So 
GNSS alone cannot fulfill the requirements of service for 
modern navigation systems.  

Urban Canyon  

Under Pass  

Fig. 2.  GNSS in Challenging Environment 

III. PROBLEM STATEMENT    

Presently, there is a growing demand for low-cost 
navigation systems that can provide accurate positioning at 
all times, even in GPS harsh environments. A full IMU is a 
self-contained device that consists of three accelerometers 
and three gyroscopes to continuously measures three 
orthogonal linear accelerations and three orthogonal angular 
rates, respectively. These raw measurements are then 
transformed into position, velocity, and attitude using a 
sequence of mechanization equations [12, 13]. Other 
complementary navigation methods rely on information 
from sensors such as steering encoder, odometer, velocity 
encoder, and electronic compass. These systems are self-
contained and invulnerable to external interference. 
However, their accuracy deteriorates due to several factors 
that may include sensor bias, drift, misalignment, and scale 
factor instability. By integrating these motion sensors with 
GNSS, a more accurate navigational solution can be 
obtained [14-16].   

Traditionally, integration of GPS with other systems like 
INS has been provided by KF or Extended KF (EKF), which 
relies on a linearized error model of both GPS and INS. KF 
has provided a reliable GPS/INS integration solution for 
high-end navigational and tactical grades INS. However, KF 
may not be able to address the complex stochastic and high 
order errors of MEMS grade sensors. That will result in large 
values of the non-linear error terms, which are usually 
ignored during the linearization process while generating the 
error model for KF. When the low-cost MEMS IMU is 
integrated with GPS by using traditional KF integration 
techniques, the solution becomes inconsistent, especially in 
prolonged GPS outages. For consistent KF results, accurate 
error models must be available to the KF, but MEMS sensors 

have composite error characteristics that are difficult to model 
[12-16].    

The main objective of this paper is to enhance the 
performance of integrated MEMS-based INS/GPS navigation 
systems through the PCI non-linear modeling approach that 
can deal with the non-linear parts of INS and GPS errors. In 
order to achieve this objective, this paper  aims at the 
following: l 

1. A thorough review of the PCI algorithm, a non-linear 
system identification technique with the details of different 
steps for implementation, is discussed.   

2. The research approach in this paper relies on reduced 
inertial sensor systems (RISS), which limits the reliance on 
MEMS-based gyroscopes to avoid their high levels of noise 
and drift rates. The RISS incorporating single-axis gyroscope, 
vehicle odometer, and accelerometers will be considered for 
the integration with GPS in one of two schemes. (i) Loosely 
coupled where GPS position and velocity are used for the 
integration, or (ii) Tightly coupled where GPS pseudorange 
and pseudorange rates are utilized.  

3. In the first scenario, PCI is employed to enhance the 
performance of KF by modeling azimuth errors for the 
RISS/GPS loosely coupled integration scheme. The azimuth 
non-linear error model is identified online using PCI, and the 
corrected azimuth is sent to the KF – based RISS/GPS 
integrated module to improve the overall navigation accuracy.  

4. Then PCI is utilize for the modeling of the residual 
GPS pseudorange correlated errors. This paper provides a 
brief review to augment a PCI – based model of GPS 
pseudorange correlated errors to a tightly coupled KF to 
integrate low-cost MEMS-based RISS and GPS observations.  

IV. PARALLEL CASCADE IDENTIFICATION  

PCI technique model the non-linear system input/output 
relation of alternating dynamic linear (L) and static non-linear 
(N) elements by summing of parallel cascades. The model 
built has a finite number of parallel LN cascade paths, where 
each path consists of a dynamic linear element followed by a 
static nonlinearity. The static nonlinearity can be a 
polynomial. The model output is the sum of the outputs of the 
parallel branches, as shown in Fig 3.  

 

Fig. 3.  Illustration of the Parallel Cascade Identification 

Frechet in 1910 proved that in continuous time, a finite 
memory non-linear system whose output is a continuous 
mapping of its input can be uniformly approximated over a 
uniformly-bounded equi-continuous set of inputs to an 
arbitrary degree of precision by a Volterra series of sufficient 
but finite order [17]. Volterra series represents a functional 
expansion of a dynamic, non-linear, time-invariant functional. 
Volterra series is commonly used in system identification. 
Palm [18] showed that any discrete-time Volterra series with 
limited memory could be uniformly estimated by a limited 
sum of parallel LNL cascades, where the static nonlinearities 
N are exponentials and logarithmic functions. Korenberg [17] 
showed that any discrete-time finite memory and finite order 
Volterra series could be accurately represented by a limited 
sum of LN cascades where the N are polynomials. A major 
benefit of this technique is its independence of a Gaussian or 
white input, but identify separate L and N elements and may 
change depending on the statistical properties of the input 
chosen [17]. One cascade can be found at a time, and the 
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nonlinearities in the models are localized in static functions. 
This reduces the computation, as higher-order nonlinearities 
are approximated using higher degree polynomials in the 
cascades rather than higher-order kernels in a Volterra series 
approximation. 

The technique begins by estimating the non-linear system 
by a first such cascade. The difference between the system 
output and the cascade outputs called residual treated as the 
output of a new non-linear system. Whereas the second 
cascade is found to estimate the latter system, and thus the 
parallel array can be augmented one cascade at a time. 

 The residual (i.e., the difference between the system 
output and the cascade outputs) treated as the output of a 
new non-linear system, a second cascade is found to estimate 
the latter system, and thus the parallel array can augment one 
cascade at a time. Having an undetermined dynamic non-
linear system with accessible input x(n) and output y(n) 
(where n=0,…, T); T is the length of the data set or record 
used for the training. One can model it using a parallel 
cascade supposing that the output can depend on delayed 
input values x(n-j), for j=0,…, R, whereas R is the maximum 
lag or delay as (R + 1) is the memory length (since the series 
output y(n) depends on input delays from 0 to R lags or 
delay). The maximum degree of nonlinearity required for a 
good approximation of the system is “D”. The polynomial 
degree D cannot exceed T-R since there are D+1 coefficients 
to estimate in the polynomial, and there would be exactly T-

R+1 points available for the estimation. However, a much 
smaller value is in practice used for the polynomial degree 
D, and its value is application dependent. Fig 4 shows the 
main steps of the PCI algorithm    

 

 

(a) Original Undetermined Nonlinear System 

 

(b) LN Estimation for the first Cascade 

 

(c) First Residual Output of the new Nonlinear System 

 

(d) Second LN Cascade 

Fig. 4. Step-by-Step Implementation of PCI Algorithm 

PCI technique can be explained in the following five steps: 

1. The first cascade output of the non-linear dynamic system 
is z1(n), as shown in Fig 3(b), and it is estimated by a 
cascade of a dynamic linear (L) followed by a static non-
linear (N) element.   

2. Then compute the first residual as shown in Fig 3(c),     

( ) ( ) ( )
1 1

y n y n z n= −      

3. Fig 4(d) shows the estimation of the new non-linear 
system having input x(n) and output y1(n) by a cascade of 
L2 followed by N2 

4. Compute second residual   

 2 1 2( ) ( ) ( )y n y n z n= −
   

5. And so on … 

Let ( )ky n  be the residual after fitting the k-th cascade, so 

yo(n) = y(n). Let zk(n) be the output of the k-th cascade, so  

( ) ( ) ( ) where  1,2,........
1

y n y n z n k
k k k

= − =
−

 

Details of the PCI Algorithm 

The salient steps to obtain the impulse response of the 
dynamic linear element for the current cascade can be listed as  

When identifying the k-th cascade, the existing residual 
before the addition of the k-th cascade is yk-1(n). The approach 
utilized in this paper to get the impulse response gk(j), of the 
linear element Lk of  the k-th cascade uses cross-correlations of 
the input with the current residual, and this impulse response 
will be one of the following: 

a) Impulse response will be input residual cross-correlation  

( ) ( ) 1
1

k

1
( ) ( )

1
0, ,jg

T

k
k n R

j y n x n j
xy T R

j Rφ −
− =

= −
− +

= …=  

A portion of 2nd order cross-correlations of input and 
residual 

( )
1

,
xxyk

j Aφ
−

is used : thus the impulse response will be 

as following   ( ) ( ) ( )
1

,k jg
xxyk

j A c j Aδφ
−

± −= ,  

where (.)δ is the Kronecker delta function, the sign is 

chosen at random, A is chosen at random from 0,…,R and c is 

chosen such that 0c →  as 
2

1( ) 0
k

y n− → , e.g. 

2
1

2

( )

( )

k
y n

c

y n

−= (here the over-bar means the finite-time 

average from n=R to n=T as in the expression for 

1
( )

kxy jϕ
−

 immediately above) 

b) A portion of 3rd order input residual cross-correlation 

( )
1

1 2, ,
xxxyk

j A Aφ
−

 will be used: thus the impulse response 

will be as following     

( ) ( ) ( ) ( )
1

1 2 1 1 2 2k , ,jg
xxxyk

j A A c j A c j Aδ δφ
−

± − ± −=
 

c) We can use this expression up until “n” order cross-
correlation using the following   

  
( ) ( ) ( ) ( )

... 1

k 1 1 1 1 1 1
j , ,..., ...g

x xyk

D D D
j A A c j A c j Aδ δφ

−

− − −
± − ± ± −=

Nevertheless, in practice, cross-correlations up to third order 
are typically enough.   

The output of the linear element calculated by convolution 
summation is as follows 

                0

( ) ( ) ( )
R

k k

j

u n g j x n j
=

= −
  

Here the linear element’s output ( )ku n  depends on input 

values x(n), x(n-1), ............ x(j-R) and linear element have the 
memory length of R+1, and gk(j) is the impulse response of the 
linear element Lk at beginning the k-th cascade.  

  To obtain the static non-linear element for the current 
cascade by polynomial fitting the following steps are followed  

First ( )2
iu n  is calculated, let it equal M, and then the impulse 

response of the dynamic linear element is adjusted to be 

( )
( ) i

i

g j
g j

M
=% ,  to ensure that ( )2 1iu n =    .  

A polynomial (static nonlinearity) is best fit to minimize the 
mean square error (MSE) of the approximation of the residual. 
To fit the static nonlinearity, the coefficients aid (d=0,…D) are 
found to minimize. 
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( ) ( ) ( )
2 2

1 1
0 0

1
( )

1

D T D
d d

i i id i i id i

d n R d

e y n a u n y n a u n
T R

− −
= = =

   
= − = −   

− +   
  

 

As noted, the overbar here means a finite-time average. 

Minimizing ie  with respect to each of the 

polynomial coefficients  leads to D+ 1 equations in D+1 
unknowns “aid.” 

( ) ( )1
0

( ) where 0, ,
D

q d q

i i id i

d

y n u n a u n q D+

−

=

= = …  

It is important to know that it is suitable to add the current 
cascade to the built model or not. The new cascades are to 
minimize the mean-square error such as to drive the cross-
correlations of the input with the residual to zero [17, 19] 
and  given by the following equation:      

2 2
1

4
( ) ( )

1k k
z n y n

T R
−>

− +
  

Where  2 ( )kz n denotes the mean square of the 

candidate cascade’s output and 2
1( )

k
y n−

 denotes the mean 

square of the current residual, i.e., the residual remaining 
from the cascades already present in the model.  

Following are four stopping conditions of building a 
parallel cascade for the PCI algorithm [19]  

1. When a certain number of cascades are added. 

2. When a certain number of cascades are analyzed 
(whether they are included or rejected). 

3. When MSE is adequately insignificant. 

4. When no residual candidate cascade can reduce the 
MSE considerably. 

V. 2D REDUCED INERTIAL SENSOR SYSTEM  

Reduced Inertial Sensor System (RISS) was proposed in 
[13, 14] involving a single-axis gyroscope and a speed 
sensor to provide a full 2D positioning solution.  The 
overview of the RISS mechanization can be seen in Fig 5.  

 

Fig. 5.  Block Diagram of 2D-RISS  

For RISS mechanization, the azimuth angle is acquired 
by integrating the gyroscope measurement ωz. As this 
measurement includes the component of the earth rotation as 
well as rotation of the local-level frame on the earth’s 
curvature, these quantities are removed from the 
measurement before integration [12, 13]. Assuming a 
relatively small pitch angle for land vehicle applications, the 
rate of change of the azimuth angle directly in the local-level 
frame as:  

tan
sine e

z
N

V
A

R h

ϕ
ω ω ϕ
 

= − − −  + 

&

 

where  eω  is the earth rotation rate, ϕ is the latitude, 

ev  is the east velocity of the vehicle, h is the altitude of 

the vehicle, and NR  is the normal radius of curvature of 

the earth’s ellipsoid. 

VI. 3D  REDUCED INERTIAL SENSOR SYSTEM 

The 2D reduced Inertial Sensor System (RISS) depends 

on the fact that land vehicles mostly stay on the horizontal 
plane. Due to the limitation of 2D RISS on roads with slopes 
especially in hilly and uneven terrain, 3D RISS [14-16] was 
developed by incorporating two accelerometers for 
provisioning of pitch and roll angles and incorporating the 
vertical information in the system model to be used by the 
RISS/Odometer/GPS integration filter. When pitch and roll 
are calculated from accelerometers, the first integration of 
gyroscope to obtain pitch and roll is eliminated; thus, the error 
in pitch and roll is not proportional to time integration. The 
outcome of these accurate estimates is superior velocity and 
position estimates for 3D RISS with odometer, along with 
upward velocity and altitude that are not calculated before. 
The overview of the 3D RISS mechanization can be seen in 
Fig 6. 

 

Fig. 6.  Block Diagram of 3D-RISS  

VII. KALMAN FILTER  

Kalman filtering is an optimal estimation tool that provides 
a sequential recursive algorithm for the optimal least mean-
variance (LMV) estimation of the system states [20-21]. The 
theory of KF is well established, and details can be found in 
[21-23]. KF is the optimal estimator if the system and 
measurement models are linear. However, the INS/GPS 
integration problem has non-linear models. Thus, the 
linearization of these models is needed, and the filter works 
with linearized error-state models rather than the total-state 
non-linear model. The first KF used as for this paper operates 
in a loosely coupled fashion to fuse the GPS positions and 
velocities with the 2D-RISS computed position and velocity 
components. A block diagram of the 2D-RISS and GPS 
integration is shown in Fig 7.   

 

Fig. 7.  Schematic Diagram of the Kalman Filter for RISS/GPS Integration 

When RISS based loosely coupled integration approach is 
used, KF fuse the RISS computed position and velocity 
components with the corresponding GPS positions and 
velocities. This enables the computation of the positions, 
velocities, and attitude errors as well as sensor errors. When a 
GPS outage occurs (i.e., less than four satellites are visible to 
the receiver with clear line-of-sight), KF will run only the 
prediction stage of the filter and rely mostly on the error 
model. While using the low-cost MEMS-based inertial 
sensors, the application of KF linear error models with 
stationary White Gaussian Noise for error states estimation 
can lead to quick deterioration of the navigation solution 
during GPS outages due to their composite error 
characteristics.  
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VIII.  PCI FOR MODELING AZIMUTH ERRORS 

While using the low-cost MEMS-based inertial sensors, 
the application of KF linear error models with stationary 
White Gaussian Noise for error states estimation can lead to 
quick deterioration of the navigation solution during GPS 
outages due to their composite error characteristics. For 
RISS, residual azimuth errors after KF prediction of the 
linear part of these errors were the principal cause for the 
deterioration of the solution. PCI, a system identification 
technique that can be utilized to model the residual azimuth 
errors, can overcome the limitation of Kalman for RISS/GPS 
integration and can increase the performance.  

  

Fig. 8.  Loosely Coupled  KF-PCI technique during GPS availability 

When GPS is available, KF is employed to perform 
RISS/GPS integration. In parallel, as a background routine, 
the prediction of KF azimuth is used together with 
mechanization results and GPS aiding azimuth to derive the 
true non-linear residual error of azimuth. The block diagram 
that shows RISS/GPS integration and includes the 
identification of non-linear azimuth error by PCI is shown in 
Fig 8.  As the training data provides the reference output to 
construct the azimuth residual non-linear error PCI model. 
Moreover, the KF sent Azimuth predictions to PCI as the 
input to build the model. Input and output system dynamics 
help to identify non-linear errors, and the algorithm can then 
achieve a residual non-linear azimuth error model. 

  

Fig. 9.  Loosely Coupled  KF-PCI Technique  during the GPS outage 

 

Fig. 10.  Road Test Trajectory and circles indicate the approximate 
locations of 60-second GPS outages. 

When less than four satellites are visible, GPS outage 
occurs as a loosely coupled architecture is used. When there 
is a GPS outage, the identified parallel cascade will be 
utilized to predict the azimuth errors (residual and non-
linear) from the KF prediction for the linear azimuth error. 

The azimuth angle after correction is passed to new 
mechanization shown in Fig 9 to calculate the corrected 
position and velocity. 

A road test trajectory using ultra-low-cost ADI IMU and 
the low-cost Trimble Lassen SQ GPS receiver was conducted 
in Kingston, ON, Canada, for nearly 35 minutes. The NovAtel 
ProPak-G2-Plus combines a GPS receiver, and the Honeywell 
HG1700 IMU via SPAN technology is used as a reference 
navigation solution. Ten simulated GPS outages of 60-second 
each were introduced in post-processing for several vehicle 
dynamic conditions, including high speeds, slow speed, turns, 
straight portions, and stops, as shown in Fig 10. The errors of 
KF-PCI and KF-only solutions were compared with respect to 
the NovAtel reference solution.  

The comparison of KF-PCI and KF-only solutions for 
RISS/GPS integration are presented in Fig 11. The system 
identification technique PCI, along with KF, was able to 
model and diminish the residual and non-linear errors in the 
azimuth and improved the results for ten simulated GPS 
outages by 69.91%.  

 

Fig. 11.  RMS Position error during GPS outages 

IX. PCI FOR ENHANCING KF BASED TIGHTLY-
COUPLED NAVIGATION SOLUTION 

For loosely coupled integration, clear line-of-sight 
between the receiver and no less than four satellites is 
considered a prerequisite to provide position, velocity, and 
timing aiding. The signals transmitted by the GPS satellites 
can suffer frequent interference and signal blockage in urban 
canyons and thick foliage where an uninterrupted clear view 
of the sky for the receiver is not presumable. Tightly coupled 
integration using the 3D reduced inertial sensor system is a 
better choice in challenging GPS scenarios, especially when 
the number of visible satellites is three or less as it can provide 
GPS aiding. However, errors of pseudoranges measured by the 
GPS receiver used as aiding in the RISS/GPS integrated 
solution will affect the overall positioning accuracy. This 
section of the paper explores the benefits of using PCI, a 
system identification technique for modeling residual 
pseudorange correlated errors that can be utilized by a Kalman 
filter (KF)-based tightly-coupled RISS/GPS navigational 
solution.  

Fig 12:  Block Diagram of Nonlinear System Identification to Model the 
Pseudoranges during GPS Availability using Tightly Coupled KF 

PCI can improve the overall navigation solution by 
modeling residual pseudorange correlated errors to be used by 
a Kalman filter (KF)-based tightly-coupled RISS/GPS 
navigational solution, as shown in Fig 12.  
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When less than 4 satellites are visible, the PCI model for 
the visible satellites is utilized to estimate the residual 
pseudorange errors for these satellites, and the corrected 
pseudorange value is provided to KF, as shown in Fig 13.   

 

Fig. 13.  Tightly Coupled KF-PCI Technique  during the GPS outage 

A 51 minutes long trajectory was considered to check the 
validity of the proposed technique.  It started at the  Royal 
Military College of Canada, covering the major roads in 
Kingston city.  Six 60 seconds GPS outages were introduced 
in post-processing during good GPS availability, as shown in 
Fig 14 on the map as blue circles.  

 
Fig. 14.  Road Test Trajectory and circles indicate the approximate 

locations of 60-second GPS outages. 

The trajectory was tested by partial outages having 3, 2 
and 1, and 0 visible satellites, respectively. The errors 
estimated by KF-PCI and KF-only solutions for RISS/GPS 
integration were evaluated with respect to the NovAtel 
reference solution. Fig 15 shows the average RMS position 
errors in meters.  

 

Fig. 15.  RMS Position error during GPS outages 

The most significant performance of the PCI build model 
for pseudoranges error corrections was observed when three 
satellites were available since three corrected ranges served 
the tightly-coupled solution offering the highest effect. For 
RMS position errors, the performance enhancement of KF- 
KF-PCI over KF-only solution os 38.68%. The contributions 
of pseudoranges error corrections using PCI keep on 
diminishing for two satellites and one satellite cases. For 
RMS position errors, the improvement using the proposed 
PCI model reduced to 16.48% for KF-PCI over KF-only for 
two satellite cases. There was no improvement using the 
proposed PCI model for one-satellite cases. No corrections 
were available for PCI build model for pseudoranges errors 
in case of zero satellite, and the solution available by KF-
PCI and the traditional KF was, in fact equivalent. 

X. CONCLUSION 

This paper has discussed PCI a non-linear system 
identification techniques to improve the performance of the 
integrated RISS/GPS system. Two versions of RISS were 
used, one based on the single-axis gyroscope, along with an 
odometer, proposed by the author, integrated with GPS, while 
the other incorporates two accelerometers to calculate pitch 
and roll. The complementary strengths of GPS and RISS can 
be synergized, and optimal performance would be achieved 
during GPS outages. First, loosely-coupled, and then tightly-
coupled integration schemes were considered. Enhancements 
for both integration techniques were suggested, successfully 
implemented, and tested for real road trajectories data using 
KF. Results demonstrated the worth and effectiveness of the 
proposed system identification techniques for the 
enhancement of integrating navigation system.  
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